Matematika | Felsőoktatás » Máthé András - Önhasonló halmazok egybevágóság-invariáns mértékeiről

A doksi online olvasásához kérlek jelentkezz be!

Máthé András - Önhasonló halmazok egybevágóság-invariáns mértékeiről

A doksi online olvasásához kérlek jelentkezz be!


 2005 · 24 oldal  (290 KB)    magyar    46    2007. június 21.  
    
Értékelések

Nincs még értékelés. Legyél Te az első!

Tartalmi kivonat

                                              !!"                         ! " # $" "                                  ! "              #        $    %      & Rd $     K  #     '    ϕ1 , ϕ2 , . , ϕr (r ≥ 2)      '     K = ϕ1 (K) ∪ ∪ ϕr (K) ($)  *+,       ϕ1 , ϕ2 , . , ϕr  )'  

   # K     K = ϕ1 (K) ∪ . ∪ ϕr (K) -     $ $' ! K  '           . /  $  ' 0   ϕ1 , ϕ2 , , ϕr  '      K = ϕ1 (K)  .  ϕr (K)  K    ' #  $ $' &     .   K  '      '      {ϕ1 , ϕ2 , . , ϕr }    K = ϕ1 (K)   ϕr (K) & K  .    '     (ϕi1 ◦ ◦ ϕin )(K)      ! .     '         1 r p1 , . pr ∈ (0, 1)       μ ' 2  3   i=1 pi = 1 % K    μ◦ϕi = pi ·μ (1 ≤ i ≤ r)    H ⊂ K 3    μ(ϕi (H)) = pi · μ(H) (1 ≤ i ≤ r)  # $ *+,    4 5 6 

&        . $           '    /     7     0   $         ' 1 $  ($ 8     # ' $   / # $ *4, 5, 9, :,0            .           #  2     /0   &  $ / $ 0 7         #     #  2  7       $      /7   0                *9, % '       $;  K  '    $  '  μ           g  '  K ∩ g(K)    K            μ K ∩ g(K) = μ K (K ∩ g(K))    5 <    ! 

          .         /      0   ; "   $  ' ' K  '     μ         c < 1         g  '  μ K ∩ g(K) < c  K ⊂ g(K)   5 =  >?    K = ξ1 (K) ∪ . ∪ ξr (K)  #   $   ξi   ? /  ?    .  )'     # )'  0    .     ?    #)        ?        3 .  *<,  ")"$ @,     #A   " B   ($ 8  ' C $  1 *+D,  $     2      ($ 8  $   E *+4,    $ .     +   ($ 8     *++,  #     !  

 $       '  -    .     ! "        #A     ?      '       #    2 /! #$     #A     $       0 F          '         #    2 G  H I *J,  $        #         $             & 1 $       $   *=, 1 K ⊂ Rd  3     μ   K 3     & μ  '   $    H ⊂ K 3     g '  g(H) ⊂ K   μ(H) = μ(g(H)) (   '     ' $     /4 9 6 0; 

μ∗ '  3   Rd    μ∗ |K = μ !         /  ' ?0               '        K #     2 K         .        '   & .    ?      $ $     !  $  ' '  '      )'  $  '      &       .  $ "   $  ' ' K ⊂ Rd  '      μH '  3   Rd    μH (K) = 1    .   ' ($ 8           / # $ *+5, +D=  0 & ($ 8   '     '     '   

μH      K            '         $  ' '  '    !  ($ 8    $$        5 =    '   )'  F      μ     '      '      2 " $$       .        '    /9 9 0 !   μ     pi '    '   ' ϕi  '     '  2   '   μ '   &         '        .               .        '   9 :  4      !      

$      # .   L)' !  $  ' '  '   .    # $  {ϕ1 , ϕ2 , . , ϕr }     {ϕ1 ◦ ϕ1 , ϕ1 ◦ ϕ2 , , ϕ1 ◦ ϕr , ϕ2 , ϕ3 , , ϕr }     & K  {ϕ1 , . , ϕr }     '     (ϕi1 ◦ ◦ ϕin )(K)        (ϕi1 ◦. ◦ϕin )(K)   )'    F    $ M  ' ;  M       $ M I = (i1 , i2 , . , in )    # $ ϕI = ϕi1 ◦ ◦ ϕin  pI = pi1 pi2 pin & I = ∅     $ M ϕ∅ =    p∅ = 1 N     K  '      ϕI (K)      '         h  '  h(K)   '       h(ϕI (K))      %&!'  K     K

"  ! # $    μ ◦ ϕi = pi · μ μ(K) = 1          #    μ   p1 , . , pr ∈ (0, 1)    {ϕ1 , ϕ2 , . , ϕr }    #  r i=1 pi = 1   (i = 1, . , r) 3       . $    σ  #     3    '  1$    '    )  2 .    O  P .  )  &  $    F = {ϕ1 , ϕ2 , . , ϕr }  L    F1 = {ψ1 , ψ2 , . , ψs }      1 ≤ i ≤ r   I $ M   ϕi = ψI !      L  .    F1 ≤ F  F L   F1  ! .         .   '  L   ! .             L   F   '   /  $  '0       .     / 

  0 )    .  /  :  0 &     .    )    '  '     '  F     . L                 %&!'  K ⊂ Rd      '   % "    μ   μ #&#  g # g(H) ⊂ K      K "   & H ⊂ K "    μ(H) = μ(g(H)) ! K = Rd         L)'  ' ) & 4 9 6 $       L)'; K   '     Rd '   5 -  αi   ϕi  '    F        #     '  K       '   # F ϕI (K)  ϕJ (K) '  αI = αJ & 9 9

)'    μ     #     '      αi1 αi2 . αin = αj1 αj2 αjm   pi1 pi2 . pin = pj1 pj2 pjm   μ  pi  "   $  ' '  '   .  ' ($ 8  #    *+5,     $ +   / #    ($ 8    '     0      #$   #  '  & ($ 8       .     pi = αsi    s #  '     αsi = 1  ##   '   ' & Rd $     '     '  '   # ' "   '  x αAx + b    α ≥ 0 '       A  n × n    M  '  b ∈ Rd #       !  2    '    Rd +d

      ;    d2     αA 2 M    '     d #  b   ' F Rd +d    2    $    '     Rd +d         2 H   '   $  "   '   Rd +d        H $      #    #            # &  '      # )'   $    '   #  )  #       # )'  !  ) #   #  $ ) #     L   # ' /#    ) #      0  (h, g) h ◦ g  g g−1 .   #  ! 2 '    gn ∈ H  '   #       h ∈ H  '   /gn h0    K ⊂ Rd  #    ε > 0  N      n ≥ N  x ∈ K     gn (x), h(x) < ε %  

   dist           #         ( !   K = ϕ1 (K)  .  ϕr (K)    !  0 ≤ p1 , . , pr ≤ 1 "  K &      pi = 1       H ⊂ K "              μ # $  1 ≤ i ≤ r & μ(ϕi (H)) = pi · μ(H) # μ ◦ ϕi = pi · μ "!  F    ϕI (K)  ; μk (H) = inf  pI   ! L$  μk   ∞  pI i : H ⊂ i=1 ∞  i=1  ϕIi (K) . &    K         $     $   '       $         '  #    3        $   3     σ       #   μ 9 & $   μ(K) = 1 F    μ(K) ≤ 1 F K  .    

 ' K ⊂ ∞ #       i=1 ϕIi (K) & ϕIi (K)  )   K       .  K  F $          .   !      M  K = ni=1 ϕIi (K)  ϕIi (K) ∩ ϕIj (K) = ∅  i = j !  .   #          $ M    '  $)' #$   ni=1 pIi = 1  μ(K) = 1 &    μk L)' #       H ⊂ K 3    μ(ϕi (H)) = pi · μ(H)   1 ≤ i ≤ r  1 μ    ' 2  3      μ ◦ ϕi = pi · μ (1 ≤ i ≤ r) &      μ  μ     μ (ϕI ) = μ(ϕI ) = pI K          '  $    $'           μ  μ  μk L)' # μ(H) = inf {μ(G) : H ⊂ G } , μ (H) ≤ μ (G) = μ(G)

(H ⊂ G ). !  μ (H) ≤ μ(H) $ μ (K H) ≤ μ(K H)   #$    H ⊂ K 3  μ (H) = μ(H)  ( !   ∅ = K ⊂ Rd "    μ∗ #&# "  K &         μ #&# "  Rd &     μ∗ |K = μ "!  (  H ⊂ Rd 3     .   K   '  ' #      μ∗   ( .     $  H = i Hi   ' 3 #)'   Hi ⊂ gi (K)   gi '   1   μ∗ (H) = μ(gi−1 (Hi )). i & $    ' L)'  .  #)'   '     ' 1 H = j Hj  Hj ⊂ gj (K)    #)'    H = i,j Hi ∩ Hj #)';  i μ(gi−1 (Hi )) =  i μ(gi−1 (Hi ∩ Hj )) = j

=  i j μ(gj−1 (Hi ∩ Hj )) =  μ(gj−1 (Hj )). j F μ∗  .  #)'   '     ' 3$   μ∗  μ∗ (∅) = 0 & σ         '   $ Ai 3    (   .   K   '   ' #     $'$        $'      #   Ai = j Hij  Hij ⊂ gij (K) !   i Ai = i,j Hij  #)''  '    μ∗ i Ai = i μ∗ (Ai ) : & #      μ∗ |K = μ  μ∗ '  "  $  #          )  K = ϕ1 (K)  .  ϕr (K)   μ        ε > 0&   a(K)      "!  " H .                 H ⊂ K   #  $ "   

   μ H ∩ a(K) > (1 − ε)μ a(K) (  #   H   (1 + ε) μ(H) >       ' i ϕIi (K) μ(ϕIi (K)). i (  i   (1 + ε) μ(H ∩ ϕIi (K)) > μ(ϕIi (K)),     ϕIi     . a !      (1+ε) μ H ∩ϕIi (K) ≤ μ(ϕIi (K))  (1 + ε) μ(H) = (1 + ε) μ H ∩     ϕIi (K) ≤ μ ϕi (K) , i     .    * )  K = ϕ1 (K)  .  ϕr (K)                    H i ai (K)        μ H ⊂ K "     ε > 0&            μ H ∩ai (K) > (1−ε)μ ai (K) ( ai (K)  $ "!  " ' '   $   ai (K)     & n  #  /n = 0, 1, 2, . 0  $      / 20 an (K)           an

(K) ∩ ai (K) = ∅ (0 ≤ i < n)  μ H ∩ an (K) > (1 − ε)μ an (K) ( )    $   $   & $   H i ai (K) $ 2  .   #  2 !     4 : 1    a(K)      μ (H i ai (K)) ∩ a(K) >   #       & (1 − ε)μ a(K)    a(K)              μ H ∩ a(K) > (1 − ε)μ a(K) (   #       $ a(K)          a(K) )       #       ai (K)    (   #     a(K) $)     $         ai (K)    Q    ai (K) ⊃ a(K)  ai (K) ⊂ a(K)     + )  K ⊂ Rd   μ=K    μ # $  "   Rd &  gn   #    gn h K) 1 !

μ(h(K) ∩ K) = 1  K ⊂ h(K) J   μ(gn (K) ∩ "!   .   μ(h(K) ∩ K) = q < 1 -  h(K)ε  h(K) ε $     " ∞   μ h(K)1/n ∩ n=1 (h(K)1/n ∩ K) = h(K) ∩ K  μ       K μ h(K) ∩ K = q 1  ε > 0   μ h(K)ε ∩ K ≤ 1+q 2 < 1 !    1+q n gn (K) ⊂ h(K)ε  μ gn (K) ∩ K ≤ 2        μ(gn (K) ∩ K) 1  μ(h(K) ∩ K) = 1 " μ ' K   K         #  2 & K h(K)   $ 2     K ⊂ h(K)   )  K = ϕ1 (K)  .  ϕr (K)   μ         K & !  A )       μ(A ∩ K) = 0 # A⊃K "!  "  J $ M  ϕJ (K)   ?  ##   '    K     ϕJ  '  & 

    $' ϕJ (K) ⊂ K   '  !  A ?  A ⊃ K #      A ⊃ ϕJ (K) F $ M   ? . #   K    x1 , x2 , , xk 1  U1 , U2 , . , Uk  M            #    #  k #  ? . "  1 ≤ i ≤ k    ϕIi (K)     Ui  1 ε = min1≤i≤k μ(ϕIi (K)) > 0 F      K    ' A ?       ϕIi (K)     K $   J $ M  A ?     (ϕJ ◦ ϕIi )(K)   1 ≤ i ≤ k  A ⊃ ϕJ (K)       A ⊃ K !  μ(A ∩ ϕJ (K)) ≤ (1 − ε)μ(ϕJ (K))  A ⊃ K  .   A ⊃ K  μ(A ∩ K) > 0 & 4 : 1    ϕJ (K)      (1 − ε)μ(ϕJ (K)) < μ(A ∩ ϕJ (K)),     .    & 

 .  #$     $     K '        K   g(K)  ' #  /g  ' 0 E $    K ⊂ g(K)            &  4 < 6          g  '   K   A ?   μ(g(K) ∩ K) = 0  K ⊂ g(A) !  )    '   .  $    A LM    '      )   A                       '        ' $        '     ? $   '          H " ##   '  .    K ? $    $    !    .  '                   .    =    

    ! .         $; "   $  ' ' K  '    μ       c < 1         g  '  μ(g(K) ∩ K) < c  K ⊂ g(K) &     )'  #'$  .        3$      '    G  #        g ∈ H  g ∈ G    g (K) ∩ K = g(K) ∩ K  2            G   '     $ V, U ⊂ H          V ⊂ U ⊂ H   U V  g  '   .   /  c    0 &  g ∈ U V  '   O '   P  K  '   !$ $    V   '    $  c    ;  g ∈ V {  } O    P  K    # 

  K   #)     g  O   P /     # 0      #       1 μH  .  ' ($ 8          μH (K) =      h ∈ G  '   1 ! K             K ⊂ h(K) & ($ 8       $   )     h  '        h           c      μH  !       M $      1   "  $  G    h  '        &  .     # /4 = 1 0  $     c < 1         #    g  '   μH (g(K) ∩ K) < c !   $    G   '        c < 1       $  

   μH  N            μH         U       μ     $    K ⊂ h(K) .   h ∈ G  '        g  '   μ(g(K) ∩ K) < c !$   /.      '0       '      /   c < 1    0   ( !   K                    U ⊂ H  g ∈ U & g(K) ⊃ K ⇐⇒ g =    "!  -  n  K ? $  ' & $           U         g ∈ U   g(K) ⊂ K ⇐⇒ g =   !    g ∈ U   K ⊂ g−1 (K) ⇐⇒ g =     U = U −1 = {g−1 : g ∈ U  }    U          h ∈ U  K

⊂ h(K) ⇐⇒ h =      $    "  4 < 6     $ ϕI1 (K), . , ϕIk (K)     <         #     M $$'  #  k = n + 1 #  M   ? . #  K ? $ 1 d = min1≤i≤k  (ϕIi (K), K ϕIi (K)) d > 0 1 U                g ∈ U   '  K   #     d  1 g ∈ U   g(K) ⊂ K !  d  U  L)'  g(ϕIi (K)) ⊂ ϕIi (K)   1 ≤ i ≤ k "   '   M  )' '   )        #   $    M $$    #  &  M $    ' $    '   .   3 $B LM#      LM#  g " g LM#    ?    k = n + 1 LM#  ? $ ## K ? $ 

g =      ( !   K = ϕ1 (K)  .  ϕr (K)                c<1           U ⊂ H  μ    g ∈ U {  } =⇒ μ(K ∩ g(K)) < c "!  N   5 + 6   U            )       g  '    g(K)   K     g ∈ U  x ∈ K    (x, g(x)) ≤ 1 N   U   #  H     # 1 V ⊂ U              i = 1, . , r −1 ϕi ◦ V ◦ ϕi ⊂ U    i = j   g ∈ V  g(ϕi (K)) ∩ ϕj (K) = ∅ &   $      # )' .           g #        ' & $    c < 1   g ∈ U V =⇒ μ(g(K) ∩ K) < c %   .    U V

  '    gn     μ(K ∩ gn (K)) 1 & U V  #     gn   gni       gni     h(K) ⊃ K   U V  )  h  '  h ∈ U V & 4 = 1 7$      g ∈ U {  } μ(K ∩ g(K)) < c $  c     ( g ∈ U V       $ 1 g ∈ V {  } -  A  g LM#    3$     x ∈ K A    ϕIx (K)   x  '      ϕ−1 Ix ◦ g ◦ ϕIx ∈ U V 1 (i1 , i2 , . )    M     {x} = ∞  (ϕi1 ◦ ϕi2 ◦ . ◦ ϕin )(K) n=1 1 In = (i1 , . , in ) " g ∈ V   ϕ−1 i1 ◦ g ◦ ϕi1 ∈ U  V −1   n ϕIn ◦ g ◦ ϕIn ∈ V    V L)'  L)' .  ( −1 −1 ϕ−1 In+1 ◦ g ◦ ϕIn+1 = ϕin+1 ◦ ϕIn ◦ g ◦ ϕIn ◦ ϕin+1 ∈ U. @ −1

3$       n ϕ−1 In ◦ g ◦ ϕIn ∈ V 1 y = ϕIn (x)   y ∈ K  −1 −1   {x} = ∞ LM#  g n=1 ϕIn (K)  (ϕIn ◦g ◦ϕIn )(y) = ϕIn (g(x)) " x    n    (g(x), x)  = t > 0.   g(x), ϕIn (K) > 2 -  ϕi   αi   2 ϕI   αI (0 < αI < 1) !        ϕ−1   (ϕ−1 In (g(x)), K > t/αIn   In ◦ g ◦ ϕIn )(y), K > t/αIn      n    1    n ϕ−1   V     In ◦ g ◦ ϕIn  U     "       #    n   ϕ−1 In ◦ g ◦ ϕIn ∈ U V     n Ix = In & $     g(ϕIx (K))∩K ⊂ ϕIx (K) $ $   k < n ϕ−1 Ik ◦g ◦ϕIk ∈ V   (ϕ−1 Ik ◦ g ◦ ϕIk ◦ ϕj )(K) ∩ ϕl (K) = ∅  j = l F $ j  ik+1    −1 (ϕIk ◦ g ◦ ϕIk+1 )(K) ∩ ϕl (K) = ∅ 

l = ik+1   ## (g ◦ ϕIk+1 )(K) ∩ (ϕIk ◦ ϕl )(K) = ∅ /l = ik+1 0 #)  (g ◦ ϕIn )(K) ∩ (ϕIk ◦ ϕl )(K) = ∅ (l = ik+1 ). ! k = 0 1 .  n − 1  ##      g(ϕIn (K)) ∩ K ⊂ ϕIn (K) & {ϕIx (K) : x ∈ K A}  .   K A "  x = y  ϕIx (K) ∩ ϕIy (K) = ∅  ϕIx (K) ⊂ ϕIy (K)  ϕIx (K) ⊃ ϕIy (K)    .    '   ' 2  $ .    K A 1 K A ⊂ ∞ i=1 ϕJi (K)   .  !  g(ϕJi (K) ∩ K) ⊂ ϕJi (K)      A    '    K   ?   4 < 1  # μ(g(K) ∩ K) ≤ μ(g(A) ∩ K) + μ(g(K A) ∩ K) = μ(g(K A) ∩ K) ≤    ∞ ∞ ∞       ϕJi (K) ∩ K = μ g(ϕJi (K)) ∩ K = μ g(ϕJi (K)) ∩ ϕJi (K) = ≤μ g i=1 i=1 i=1 ∞ ∞       −1 μ ϕJi ((ϕJi ◦ g ◦ ϕJi )(K) ∩ K) = pJi μ (ϕ−1 = Ji ◦ g ◦ ϕJi )(K) ∩ K

. i=1 i=1 " ϕ−1  c   Ji ◦ g ◦ ϕJi ∈ U V    $  ' .  #    μ(g(K) ∩ K) < pJi · c = μ(ϕJi (K)) · c = μ ( ϕJi (K)) · c = c ! $      ( !   K = ϕ1 (K)  .  ϕr (K)           # g ∈ G   G ⊂ H              g & g (K) ∩ K = g(K) ∩ K "!  & K   ?    Rd  1 δ = min1≤i<j≤r  (ϕi (K), ϕj (K)) D =  (K) K   (  g  '        D/δ   g (K)   )' g (ϕj (K))       +D         D     ϕi    g (K) ∩ K ⊂ g (ϕi (K)) !     g  '  )   g ◦ ϕi      '  Rd     '  x Ax + b 

'   A  M      '   b #      F        b   /Rd 0   g(K) ∩ K = ∅   g(x) = Ax + b  . D/δ    '  N    Rd ' ' '  /    M 0   #      G  #       ( !   K = ϕ1 (K)  .  ϕr (K)   * + !       μH  μH (K) = 1      g           g(K) ⊃ K          c < 1  ,-&         g  μH (g(K) ∩ K) < c # K ⊂ g(K)  ,- .     ϕI (K)  c    g &      μH g(ϕI (K)) ∩ ϕI (K) < c · μH ϕI (K) # ϕI (K) ⊂      g(ϕI (K)) "!  &

 '    '          $ 1 ε > 0   1 h    '    K ⊂ h(K) -  Kδ    K δ $   " μH h(K)      )  δ > 0     μH Kδ ∩ (h(K) K) < ε & $  5 4 6  K    μH       U  cH   #          1 W ⊂ H          W ∪ W −1 ⊂ U  g ∈ W ∪ W −1 =⇒ μH (g(H)) ≤   x ∈ K   (g(x), x) < δ (1 + ε)μH (H)   H 3     1 g ∈ W h  g = h W h  h     !  g ◦h−1 ∈ W {  } h ◦ g−1 ∈ W −1 {  }  (h ◦ g−1 )(K) ⊂ Kδ !        μH K ∩ g(K) ≤ (1 + ε)μH (h ◦ g−1 )(K ∩ g(K)) = (1 + ε)μH (h ◦ g−1 )(K) ∩ h(K) =     = (1 + ε)μH (h ◦ g−1 )(K) ∩ K + (1 + ε)μH (h ◦ g−1 )(K) ∩

(h(K) K) ≤   ≤ (1 + ε)cH + (1 + ε)μH Kδ ∩ (h(K) K) ≤ (1 + ε)cH + (1 + ε)ε. !    1  ε  )   $   h W h    g = h  '   g(K) ⊃ K ! $    g(K) ⊃ K  '      & 4 = 1 '      ##    .     sup {μH (g(K) ∩ K) : g ∈ H, g(K) ⊃ K} = 1 !  sup {μH (g(K) ∩ K) : g ∈ G, g(K) ⊃ K} = 1  1 gn      G    gn (K) ⊃ K  μH (gn (K) ∩ K) 1 gn h !   4 = 1   h(K) ⊃ K    gn = h !  n gn ∈ W h  μH (K ∩gn (K)) ≤ (1+ε)cH +(1+ε)ε       μH (gn (K) ∩ K) 1  ++ * ) !            #         #     "!  1 U  #      K  "  x ∈ U   Ex      x ∈ Ex

⊂ U " U  #   Ex            .  &     .           + .   K = ϕ1 (K)   ϕr (K)                  μ     g  c < 1    μ(g(K) ∩ K) < c # K ⊂ g(K) "!  !  )   G   '      5 5 6  1 cH  5 9 6   #   K    μH        1 h ∈ G    '    h(K) ⊃ K &  h             /5 9 6   # 0  G  #   & $   4 : 1   h(K)  '    μH  0 < ε ≤ 1 − cH  H = K ⊂ h(K)    !   ϕI        μH K ∩ h(ϕI (K)) ≥ (1 − ε) μH h(ϕI (K)) . & 5 :       h(ϕI (K))     

K  ' # K ⊃ h(ϕI (K)) " h(ϕI (K))      h(K)  K         h(ϕI (K))  #     5 J 1   h(ϕI (K))   K     $' !   ϕJ (K)  ϕJ (K) ⊂ h(ϕI (K)) ⊂ K ⊂ h(K) " ϕJ (K)   K     h(ϕI (K))    h(K)  !   (ϕJ (K), h(K) ϕJ (K)) > 0    h     g    g ◦ h−1 h(K) ϕJ (K) ∩ ϕJ (K) = ∅. !  g    g(K) ∩ ϕJ (K) = g ◦ h−1 h(K) ∩ ϕJ (K) =       = g ◦ h−1 ϕJ (K) ∩ ϕJ (K)  g ◦ h−1 h(K) ϕJ (K) ∩ ϕJ (K) =    = g ◦ h−1 ϕJ (K) ∩ ϕJ (K). &   5 4 6  #$   h     g g = h   μ       g ◦ h−1 ϕJ (K) ∩ ϕJ (K) < c · μ ϕJ (K) = c · pJ .     μ g(K) ∩ ϕJ (K) = μ (g ◦ h−1 )(ϕJ (K)) ∩ ϕJ (K) < c · pJ   

    μ g(K) ∩ K = μ g(K) ∩ ϕJ (K) + μ g(K) ∩ (K ϕJ (K)) < c · pJ + 1 − pJ = 1 − (1 − c)pJ . +4 "   )     h  '    '  c < 1        G  h  #       g μ g(K) ∩ K < c !    /.   4 = 1 0  c < 1     g ∈ G  μ g(K) ∩ K < c  g(K) ⊃ K /  5 9 6    0           G   '    !         K  '     ϕI (K)      $ & ϕI (K)     $  c    '  K       μ g(K) ∩ ϕI (K) < c · μ ϕI (K)  ϕI (K) ⊂ g(K)  ,-  K = ϕ1 (K)  .  ϕr (K)    μ        K & !      & g  μ g(K) ∩ K > 0   g(K) ∩ K  #

 K &     μ  K (g(K) ∩ K) = μ g(K) ∩ K   %  %      g  "!  ( g(K) ∩ K         #    #             #  2 1 c  5 =   K    '    1 g   '      μ g(K) ∩ K > 0 & $  4 J 1  ε = 1 − c    1   '   $ ai (K)            μ g(K) ∩ ai (K) = μ (g(K) ∩ K) ∩ ai (K) > c · μ ai (K)    g(K) ∩ K i ai (K) $ 2 & 5 =   ai (K) ⊂ g(K) " ai (K)   K     g(K) ∩ K     i ai (K) ⊂ K (g(K) ∩ K) !     μ g(K) ∩ K = μ g(K) ∩ K ∩   ai (K) + μ (g(K) ∩ K) i  ai (K) =   ai (K) ≤ μ K (g(K) ∩ K) , =μ i           !  " #    

&  .   #   2  '         )  K = ϕ1 (K)  .  ϕr (K)   /     g  #      g(K) ⊂ K     g(K)      0   "!  &  g  '             $' &     .    K ⊂ g−1 (K) & $' $      '            5 9 6   #   +5 &  h ∈ H  '         LM        h(K) ∩ K = ∅  #     H /  5 5 6   0 "  #              .    )  K = ϕ1 (K)  .  ϕr (K)     #     λ(K) ⊂ K !       k ≥ 1 

   I, J λ  1 k  λ ◦ ϕI = ϕJ "!  "  k ≥ 1     ϕI (K)        k λk (K) !  I  (ϕ−1 I ◦ λ )(K) ⊂ K      )'       %  ' ' )      9 + 1      −1 −1   k k k  −k  λk  −k ◦ ϕ = ϕ   k < k  I  I    ϕI ◦ λ = ϕI  ◦ λ    ϕI  ◦ ϕ−1 I I I =λ / -   &       λ(K) ⊂ K    λ  '  μ(λ)     μ λ(K)  ( '    # )'     $   ◦   g1 g2     g1 ◦ g2   gk   k  g  # )' &       μ       '      2    )   . '  ' ϕI  '   μ ◦   λ(K) ⊂ K $   λ 

'   μ ◦ λ = μ(λ) · μ ϕI = μ(ϕI ) · μ  &              ( !   K = ϕ1 (K)  .  ϕr (K)   μ        $ * !   #  +              #        λ(K) ⊂ K  μ ◦λ = μ λ(K) ·μ %         μ λ(H) = μ λ(K) · μ H λ   H ⊂ K "  ϕI (K)    μ g(ϕI (K)) (    g # g(ϕI (K)) ⊂ K     μ ϕI (K) = "!  &        λ  '          #  # &     '    $ & 9 + 1   )     λ  '     λ(K) ⊂ K  λ(K)     )'       -   λ0 , λ1 , . , λt   

λ0      & $             '    F'    λ  '    λ(K) ⊂ K   ϕI ◦ λi    I   i /$  ϕI (K)           λ(K)    ϕ−1 I ◦ λ  '  K    #      )'    +9       λi   0 &       #  μ ◦ ϕJ = pJ · μ = μ(ϕJ (K)) · μ   J $ M    H ⊂ K 3                μ λ(H) = μ (ϕI ◦ λi )(H) = μ ϕI (K) · μ λi (H) = μ ϕI (K) · μ λi (K) · μ H =         = μ (ϕI ◦ λi )(K) · μ H = μ λ(K) · μ H ,    $ "  0 ≤ i ≤ t  9 4 1    Ii  Ji $ M  ki #        λki i ◦ ϕIi = ϕJi 1 bi = ϕIi  ci = ϕJi   λki i bi = ci

1   μ∗ (λi ) = ki μ(ci ) . μ(bi ) 7$    μ∗ (λi ) = μ(λi ) "  0 ≤ i ≤ t    I $ M  0 ≤ j ≤ t    J $ M   λi ◦ϕI = ϕJ ◦λj / ϕJ (K)           (λi ◦ϕI )(K)0 ( '       # ))'; g1  g2  '   g1 ≈ g2      g1 ◦ g2−1 '     H   g1 (H)  g2 (H) '      g1  g2   .   !   '   .   #     g1 ◦ g2 ≈ g3 ⇐⇒ g2 ◦ g1 ≈ g3 k  $  λi ϕI = ϕJ λj  λki i bi = ci  λj j bj = cj    ' kk kk k k k k kk k k k λi i j ϕI i j bi j bkj i ≈ ϕJi j bi j λj i j bkj i ≈ ϕJi j bi j ckj i ,       k k k k k k k k k ≈ϕJi j λj i j ≈cj i k kk k k k k kk λi i j ϕI i j bi j bkj i ≈ λi i j bi

j ϕI i j bkj i ≈ ci j ϕI i j bkj i .    k ≈ci j &   kk k k k k ϕJi j bi j ckj i ≈ ci j ϕI i j bkj i . & bi  bj  ci  cj   .    '  '    # )''    k k k k k k ϕJi j bi j ckj i (K)   ci j ϕI i j bkj i (K)    '   .     &       μ(ϕJ )ki kj μ(bi )kj μ(cj )ki = μ(ci )kj μ(ϕI )ki kj μ(bj )ki ,   μ∗ L)' # μ(ϕJ )ki kj μ∗ (λj )ki kj = μ∗ (λi )ki kj μ(ϕI )ki kj , μ∗ (λj )μ(ϕJ ) = μ∗ (λi )μ(ϕI ).    μ∗ (λi )μ ϕI     μ λj . μ(λi ϕI ) = μ(ϕJ λj ) = μ(ϕJ )μ(λj ) = μ∗ λj +: ! )          ;   i  I   j    μ(λi ϕI ) = μ∗ (λi ) μ(λj ) μ(ϕI ). μ∗ (λj ) !      μ∗ (λj ) = 0  L)' .  1 m    M   μ(λm )

˙ μ(λi ) ≤ ∗ μ∗ (λm ) μ (λi )   0 ≤ i ≤ t  M Q   #     $ $ $ !    ϕI  μ(λm ϕI ) = μ∗ (λm )       μ(λj ) ˙ μ∗ (λm ) μ(λm ) μ(ϕI ) = μ(λm )μ(ϕI ) μ(ϕI ) ≥ ∗ μ (λj ) μ∗ (λm )   0 ≤ j ≤ t 1 {ϕIi (K)}     ' '  #)' K    ϕI (K)  # !    μ λm (K) = μ λm ϕIi (K)    ˙ μ λm ϕIi ≥  ˙ ≥ μ(λm )μ(ϕIi ) = μ(λm ), =μ λm (ϕIi (K)) =          μ(λm ϕI ) = μ(λm )μ(ϕI )   I $ M 1 H ⊂ K 3    & μ  L)' .   aij (K)         H ⊂ j i aij (K)  μ(H) = inf j μ i aij (K) = μ j i aij (K) !   μ(λm (H)) ≤ μ λm j i j = μ(λm ) inf j   j i R H c = K H    =μ λm (aij (K)) = inf ≤ inf μ j aij (K)

 λm (aij (K)) ≤ i μ(λm aij ) = inf j i μ(aij ) = μ(λm )μ i    i j i μ(λm )μ(aij ) = aij (K) = μ(λm )μ(H).    μ λm (H c ) ≤ μ(λm )μ(H c ) &        μ λm (H)) + μ λm (H c ) ≤ μ(λm )μ(H) + μ(λm )μ(H c )  '        H   μ λm (H) = μ(λm )μ(H)  μ ◦ λm = μ(λm ) · μ ! #$     H ⊂ K 3         n−1  n−1 μ λnm (H) = μ λm (λm (H)) = μ(λm )μ λm (H) ,    $)' μ λnm (H) = μ(λm )n μ(H) #)  μ(λnm ) = μ(λm )n ! μ(λkmm bm ) = μ(λm )km μ(bm ) & μ∗ (λm ) L)' μ∗ (λm )km μ(bm )  cm = λkmm bm    μ(cm ) μ(λm )km μ(bm ) = μ(λkmm bm ) = μ(cm ) = μ∗ (λm )km μ(bm ). +J = i) " μ(bm ) > 0 #$   μ(λm ) = μ∗ (λm ) " m     i  M   μμ(λ ∗ (λ ) i       0 ≤ i ≤ t μ∗

(λi ) ≤˙ μ(λi ) m) &           m  M     μμ(λ ∗ (λ ) ≥ m μ(λi )   0 ≤ i ≤ t  )   #       .  $ ∗ μ (λi )   #$     0 ≤ i ≤ t μ∗ (λi ) ≥ μ(λi ) !   0 ≤ i ≤ t μ∗ (λi ) = μ(λi ) !  m '   0 ≤ i ≤ t  $    i     μ ◦ λi = μ(λi ) · μ &            λ(K) ⊂ K     λ  '  μ ◦ λ = μ(λ) · μ   μ ◦ λn = μ(λ)n · μ "       #      .    ϕL (K)      g  '  K  # g(ϕL (K)) ⊂ K & 9 4 1    I  J $ M  k #      (g ◦ ϕL )k ◦ ϕI = ϕJ !         #     μ(ϕJ ) = μ (g ◦ ϕL )k ◦ ϕI = μ(g ◦

ϕL )k μ(ϕI ),    ϕJ = (g ◦ ϕL )k ◦ ϕI ≈ (ϕL )k ϕI   μ(ϕJ ) = μ((ϕL )k ϕI ) = μ(ϕL )k μ(ϕI ),   μ(g ◦ ϕL )k μ(ϕI ) = μ(ϕL )k μ(ϕI ), μ(g ◦ ϕL ) = μ(ϕL ),   $      . 0    '12  K = ϕ1 (K)  .  ϕr (K)         #     #        μ     $ !      μ #& K & "!  &  $     g '   H ⊂ K 3    g(H) ⊂ K   μ(H) = μ(g(H)) 1 c  5 =   c < 1    !    H ⊂ K #  2 & $  4 : 1  ε = 1−c     H   #$    a(K)           μ H ∩ a(K) > c · μ a(K) " H ⊂ g−1 (K)  μ g−1 (K) ∩    a(K) > c · μ a(K)  

 5 =   a(K) ⊂ g−1 (K) g(a(K)) ⊂ K 1   λ = g ◦ a & 9 5 6   #   μ(λ) = μ(a) /   μ(λ) μ λ(K)     0   H0 = a−1 (a(K) ∩ H)    μ(λ(H0 )) = μ(λ)μ(H0 )        0 < c · μ a(K) < μ a(K) ∩ H = μ a(H0 ) = μ(a)μ(H0 ) = μ(λ)μ(H0 ) =         = μ λ(H0 ) = μ g(a(H0 )) = μ g(a(K) ∩ H) ≤ μ g(H) , +=  g(H)  #  2 F #  2 ' #  #  2  ## $ 2 ' # $ 2 1  H ⊂ K   3    g #   '    g(H) ⊂ K & $  4 J 1    0 < ε < 1 − c    !   ai (K)           μ H ∩ ai (K) > (1 − ε) · μ ai (K)   μ H ai (K) = 0. i    !  H ⊂ g−1 (K)  μ g−1 (K) ∩ ai (K) > (1 − ε) · μ ai (K) & 5 =    #    g−1

(K) ⊃ ai (K)  g(ai (K)) ⊂ K & 9 5 6     μ g(ai (K)) = μ ai (K)   .    $ 2 ' # $ 2   μ g(H) = μ g H ∩ ai (K) +μ g H i = ai (K) =μ g H∩ i ai (K) = i          μ g(H ∩ ai (K)) ≤ μ g(ai (K)) = μ ai (K) ≤ i i    1 1 · ·μ H ∩ μ H ∩ ai (K) = ≤ 1−ε 1−ε i i ai (K) = i 1 · μ(H). 1−ε     !    0 < ε < 1 − c  μ g(H) ≤ μ H R H  g(H)  g          g−1         μ H ≤ μ g(H)   μ H = μ g(H)  μ '   1  "    4         2           '     -  αi   ϕi  '    F        #     '  K        '   #   μ  

  #     '      αi1 αi2 . αin = αj1 αj2 αjm    pi1 pi2 . pin = pj1 pj2 pjm    μ  pi  & αi        pi     $       #$  − log pi     '         − log αi (i = 1, . , r) #  '     .   )    Q   .   #)      r    . Q           '  & '   − log pi ' # r  '       Rr  #       ' / '  0     i pi = 1  .  #     (      1  '     #      1   #    ($ 8    $ $ /% 

'    pi = αsi   $ $       0 &     .         ' & '             +<  .   K    μ #&#         %        #        2        {ϕ1 , ϕ2 , . , ϕr }      #&# !  μ         "!  1 {ψ1 , . , ψs }     & 9 4 1    k #     ϕI  ϕJ       ψik ◦ ϕI = ϕJ    9 5 6   #  # 0 < μ(ϕJ ) = μ(ψik ◦ ϕI ) = μ(ψi )k μ(ϕI ),  μ(ψi ) > 0   1 ≤ i ≤ s    & 9 5 6   #   μ ◦ ψi = μ(ψi ) · μ  μ ψi (K) = 1     μ      {ψ1 , . ,

ψs }     #   & )'    2      * ,-  K = ϕ1 (K)  .  ϕr (K)    μ    #          !  0  #  μ #     &     &   #  "!  & 9 9     $    '       1 ϕI (K)  ϕJ (K) '     !  ϕ2I (K)  ϕ2J (K)  '     ϕ2I  ϕ2J  '  ϕ2I ◦ ϕ−2 J    . 2 2 2  μ(ϕI (K)) = μ(ϕJ (K)) &       μ(ϕI (K)) = μ(ϕI (K))2  μ(ϕ2J (K)) = μ(ϕJ (K))2   μ(ϕI (K)) = μ(ϕJ (K)) !   $     $  %  !   $$    '       /      $  '0  

)    .           1 ϕ1 (x) = x3  ϕ2 (x) = x3 + 23   K    #     K = ϕ1 (K) ∪ ϕ2 (K)       7   1 ψ1 (x) = − x3 + 13 !  K = ψ1 (K)  ϕ2 (K)            .      )    ' '  !   .    O    P;  {ϕ1 (K), ϕ2 (K)}   {ψ1 (K), ϕ2 (K)}          '           )'       {a1 (K), . , ar (K)}       {b1 (K), . , bs (K)}        j = 1, s  1 ≤ i ≤ r    bj (K) ⊂ ai (K) !  .     $    '  )       $         2       7       .  +@ &   $ . $ 

  '     )      .             K  '        ; ( λ1  λ2   '     λ1 (K) ⊂ K  λ2 (K) ⊂ K  λ1 (K) ∩ λ2 (K) = ∅   λ1 (K) ⊂ λ2 (K)  λ2 (K) ⊂ λ1 (K) & 5        2       $  ' '  '     &             $)'  $ "       .     K  )      .   1 a, b, c #  '     a + b + a + c + a + b + a = 1  b = a · c ! 2      0 < a < 1/4     b  c  . 1 ϕ1  [0, 1]    [0, a]   #  '  '  F ϕ2  [0, 1]    [a+b, a+b+a]   ϕ3 

[1−a−b−a, 1−a−b]   ϕ4 #   [1−a, 1]      ' F ϕ1 (x) = a·x ϕ2 (x) = a·x+a+b ϕ3 (x) = a · x + 1 − a − b − a ϕ4 (x) = a · x + 1 − a D +  ϕ1 ([0, 1])   ϕ2 ([0, 1]) ) ψ1 ([0, 1])  ϕ3 ([0, 1])   ϕ4 ([0, 1]) ψ2 ([0, 1]) 1 K     #     K = ϕ1 (K)ϕ2 (K)ϕ3 (K)ϕ4 (K) !  K   )'    a  2    b     c   $  F    K ⊂ [0, 1]  K  $  12  &        K  .  #    ϕi ([0, 1])      [0, 1]   ' '  /a = 0, 15 c = 0,4 1,3   0 &   &       ϕi (ϕj ([0, 1])) (1 ≤ i, j ≤ 4)     . &      K   #'$ '  1 ψ1 (x) = a · x + a2 + a · b + a2 + a · c  ψ2 (x) = a · x + 1 − a − b

− a2 − a · b − a2 &      [0, 1]   ϕ21  ϕ1 ◦ ϕ2  ψ1  ϕ2 ◦ ϕ3  ϕ2 ◦ ϕ4  ϕ3 ◦ ϕ1  ϕ3 ◦ ϕ2  ψ2  ϕ4 ◦ ϕ3  ϕ24  '    #  . & $   ψ1 (K) ⊂ K  ψ2 (K) ⊂ K   {ϕ21 , ϕ1 ◦ ϕ2 , ψ1 , ϕ2 ◦ ϕ3 , ϕ2 ◦ ϕ4 , ϕ3 ◦ ϕ1 , ϕ3 ◦ ϕ2 , ψ2 , ϕ4 ◦ ϕ3 , ϕ24 }  K  '    .  /     0 !   $   ψ1 ◦ ϕ1 = ϕ1 ◦ ϕ3  ψ1 ◦ ϕ2 = ϕ1 ◦ ϕ4  ψ1 ◦ ϕ3 = ϕ2 ◦ ϕ1  ψ1 ◦ ϕ4 = ϕ2 ◦ ϕ2    4D ψ2 ◦ ϕ1 = ϕ3 ◦ ϕ3  ψ2 ◦ ϕ2 = ϕ3 ◦ ϕ4  ψ2 ◦ ϕ3 = ϕ4 ◦ ϕ1  ψ2 ◦ ϕ4 = ϕ4 ◦ ϕ2 !  2       b = a · c     "   $$   )  { 1 (K), . , r (K)}     K  '        K   {ϕ1 , ϕ2 , ϕ3 , ϕ4 } .       L   .  

 '    !     K    2     .  /F'         0 %   .     { 1 (K), , r (K)}   " ϕ1 (K) ∩ ψ1 (K) = ∅    i ϕ1 (K) ∪ ψ1 (K) ⊂ i (K) R i ϕ2 (K) ∪ ψ1 (K) ⊂ i (K) ( '   j  M   ϕ3 (K) ∪ ψ2 (K) ∪ ϕ4 (K) ⊂ j (K) !     K = i (K)  j (K)     i  j  '   )       [0, 1] [0, a + b + a]  [1 − a − b − a, 1] #    b = (a + b + a) · c  . b = a · c      &  λ1  λ2  '   # $  ϕ1  ψ1  '   .  &  *+, -  ! ($)  N)   : =+5S=9= *4, T$ E  3  2 '  (  .   3 # (  4 3 /+@<+0   .    $   )  0 3

/+@@<0  +D 9DJ:S9D<= . 7    *5, 7 C$    & "   -7  # T ))    )  . $ 7   B  ($ 8      '  (  5+6  /4DD+0  + 9:S@J *9, N  Q  -$ 1 % )  .  ) 7   B     % N$   # #  7   80   /4DD40  @ +<D=S+<+= *:, UM 1  I   V  % )  .    (  0 5! ! 6 # /+@@@0  4 4+9S4+@ . 7   )  '0  *J, G  H I   B)  $     L .       $ (     /+@=+0 +J+S+J4 *=, ! "       3   B)  $   σ L .        $ '# (     *<,  3 .              E I    R  . UB) +@<9 *@, 7$ ")"$  ($  #* /+@<90 +S@     8     . 

#A  )#    4+ *+D, I  C $   E 1 ($ 8   M     .? )         /+@@40 :55S:J< *++, T$ E   #)  $ . ? )#   !  /+@@90  5 95=S9:D . )     *+4, T$ E   .? )# ")"$  3   L ($  $      ! * /+@@90 :+5S:4J *+5, 1) ) "'  / %#      !1!  +@@: 44 8