Physics | High school » István Bartos-Elekes - Physics Lab of Ady Endre High School

Datasheet

Year, pagecount:2011, 80 page(s)

Language:English

Downloads:4

Uploaded:May 04, 2018

Size:35 MB

Institution:
-

Comments:

Attachment:-

Download in PDF:Please log in!



Comments

11111 Anonymus May 15, 2018
  To the people, who this wonderful "Fizikum" destroyed: "Two things are infinite, the universe and human stupidity, and I am not yet completely sure about the universe." (Albert Einstein (alleged)
11111 Anonymus May 4, 2018
  The significance of what you have created through the Physics Lab (Fizikum) with decades of hard and dedicated work overruns the boundaries of your school and even your country. I can say with confidence (and a good measure of pride for this being the work of my fellow countryman) that the Physics Lab (Fizikum) is unique even on the international stage!

What am I basing this statement on? More than five years ago I have built a laser lab (photonlab) for high school students. In the meantime thousands of students, primarily from Bavaria, have experimented here with lasers. The lab’s director, Dr. Silke Stähler-Schöpf is in contact with dozens of Bavarian high schools and is familiar with their facilities. When I showed her the materials you’ve sent me about your lab, her jaw dropped in amazement! She hasn’t seen such a well-rounded and high-quality experimental program at any high school. To point out what this means, I would like to mention that Bavaria is one of Germany’s and therefore one of Europe’s most advanced regions. In this region there is nothing comparable to your Physics Lab (Fizikum)!

I sincerely hope that this feedback erases any doubt that your Physics Lab must be preserved!

prof. dr. Ferenc Krausz - Max Planck Institute of Quantum Optics - Gärching bei München

Content extract

Motto: ,,Physics without experiments is nothing but an unintelligible collection of formulas". dr. Bartos-Elekes István Some pictures of the physics classes held in the physics lab of ADY Endre High School Sic transit gloria mundi Excerpt from the personal letter of regarding the closing of the Physics Lab at the Ady Endre High School Munich, April 10, 2016 . this shouZd be important not onZy to the Ady High SchooZ but beyond! The significance of what you have created through the Physics Lab (Fizikum) with decades of hard and dedicated work overruns the boundaries of your schooZ and even your country. l can say with confidence (and a good measure of pride for this being the work of my fellow countryman) that the Physics Lab (Fizikum) is unique even on the internationaZ stage! What am l basing this statement on? More than five years ago l have built a Zaser Zab ( ) for high schooZ students. ln the meantime thousands of students, primarily from Bavaria, have experimented here

with Zasers. The Zabs director, is in contact with dozens of Bavarian high schooZs and is familiar with their facilities. When l showed her the materiaZs youve sent me about your Zab, her jaw dropped in amazement! She hasnt seen such a well-rounded and high-quality experimentaZ program at any high schooZ. To point out what this means, l wouZd like to mention that Bavaria is one of Germanys and therefore one of Europes most advanced regions. ln this region there is nothing comparabZe to your Physics Lab (Fizikum)! l sincereZy hope that this feedback erases any doubt that your Physics Lab must be preserved! The beginnings of building the physics lab (Fizikum) In the spring of 1987, Pap László, the principal of the school at the time, asked me to help the school realize a modern physics laboratory. Of course, I immediately said yes, and accepted this task with pleasure. Within the given tools and f inancial possibilities of the time, we started planning and dreaming. Since the f

inancial resources were low, I have designed and built equipments based on my own concepts because purchasing them was out of the question. The modern technology meant the computer, the already built interface, which was patented later (1989), and the personally developed measurement tools, connected together. The computer together with the interface controlled the experiments and automatically recorded the data. Analyzing the data was the task of the students. I wrote numerous programs for controlling experiments and data processing. Of course, besides using modern technology, we continued to carry out the classical experiments. The computer control led measurements meant preciseness and unbelievably fost measurement data recording. We got the graphs immediately after the measurements The following pictures show some of the experiments I designed and realized in the laboratory. The full half period of the pendulum, the pendulum swings freely . -------- Babe~-Bolyai University,

Cluj -Napoca Thesis work (1968) N.MR Spin-echo equipment (1) 12 kW, 42 MHz, RF impulses .- [ te . . [imi n~., , l ·µµ • .i • •---•·I 1-!- Í • ••. • • ••••••••••• # Q „ O Babe~-Bolyai University, Cluj-Napoca Thesis work (1968) N.MR Spin-echo equipment (2) 12 kW, 42 MHz, RF impulses ~ti,.,- ~~ - : ·:~I i>- - . -n 11 „U( =-,. {!, seft- . - Health Care High School, Oradea, Physics Laboratory - 1976-1979 {3 scff- Electronics Technical High School, Oradea Analogue chronometer for physics laboratories - Patented 1981 R E P UO L I C A SOC IA L I STA Jl O M A /11 1 A • ~ ,;~.:~gy- --1 "" ·OESCRJERÉA INVENTIEI 79672 (6 1) C : 0 - ~90•1iki ,. ,""" (2 1) Dosor .,11 077 (22) 0ato 1"9" 16111: ».11, lt ll () 1) lrl- (JO)l,;orit ele c o n ~l6 - CONtl Ll~ Jta" " L ltTI I„TII " T S KHOLOQ II, t2 CIHP l0/ 10 l" JJ,-0 1 IJl)Ctfllk<HM.I OFICI

UL DE STAT {O)Dolo""blótatll: -.011„2 PENTR U (11)Solitiwu,t , =.•Uva -Telep,rl~lll•"• 1 ""·-··., 1,., 1,1vnlor1m -tJckeo, "- lnven\a sa rc,fo,A o un cto n<>mclru t!lt!C lr onc LU a !i$11U? enaloglcA pcnlru m:buruCa lo lc rva lCl o r mid d u limp wi lclnr m k:I de i mp, rcspocUv, pcmlr u mli1urtm:a,1 itu di 11l fLU0J11~lorded. plnsarC! 11 cor J)Uri lo r ln mlscaro „1, ln 11pc,r;inl. a llfl"itcntJrll $l ih1str:t ril no!l u• nll dovlw·d tn.,ta nta~ {3 sof+ Sin l Cm OM:ulo ins l6IIIIII de cron0 lll l• lror~ efCClt4n icl C1? folO-~ UIIU I SaU Jo<li mulle t.Tono mc t rn dl!]1tt1le Ji mi j]oac( dc dcctan$are $1 opti re a cranomctrMor, p1 ln obliül!re& unor lasciculo de r11cll11tl i infr11ro$il , dll to rlld t reccril uoor Corpu rl mobllo prl n drC!plul o~tor lasccu lf. av1nd ln d reptul ílec11r ul genmlttor dr infr11r0$il o lotortr.Lililcnt,l conoc lalll ln drruilul unui tr1md.stor carc coraa ndll un monmt11bil,

!11 INjlH ll r,1rui ;i r.str COnlciol, un lram:istor do l~lre $1 un hiu;cufonl lih la bil c,ue l!Sle coneclat 111 büza w1ul tr11uust1;1 r. la ~a la tél lntrar( ;;i bisla hl luJul, lihW C(,nectnl Wl monwtabH I "~~---•""· c.-uT~i,,«1ltA• Crunomclru elcclron íc (U 11fi.sar e analogic:l ptDlru mfü1 u ra r"ea inter va kJor mici ,le ti mp dcstmo to l){"ntru m.!isur11rc, ln u rl ru l l a1lor<11011n:,lor dn íitlcl Ue lki,u, o ln t<-r• Besides the sundial , the measurements of time intervals are done by counting some series of events depending on time. The sand glass "counts " the sand grains falling in the bottom recipient . I counted in a similar way the electrons that arrived to the capacitor. The charge was done with constant current. The invention was published in 9 countries The smallest measurable time interval is 1 ms (full scale). Ct>.: C ot R2lfll/l °"" JNVt:NTU $1 MARCI ($-6) ú rupil 25 ; 24 apnrUn.lnd

:Ml t.1rt! (1 • lablllu10r dPCl:in"",rea <rooomNr1rll ru nd R"llmalltatJ optlc de o J5 C"Chipamc n- tu lul ck~tr-Onic al postulul dl. mibur,1 npropl11t. l nstnla ti11 suJH JWnlo nat:i ~le prfVJ• i ut,l c u 1111 Cdlcu tal0t o.soclnt crooonll• I.IC":lor dlg, lal~ J>(rm l ind 11,,i:iare1 din-c• tii a vlt(:U!r ~ l l, r ~ v . a atte· ICt"at ,Uor iiac<ill. ln acest scop utl lixln· dU·50 pa u btar kfe o,1tlcí dc h1111 ; ampf1u,11tc " di.11i11 te cu noscutc u n a dc 1111a. l>M.11van taful iru;t11!11ililor dc &ee!il ll p COnlt.i ln co111plc"<lt1te11 ~ prcul úc M .tt a l cchlpa ml!:nWto, oompo nentc CronQmctr ul, cool u rm invenjici, ln• lii tur" i:ICC":S l dc,,.ava ntnj prln aceea ca ~te 11lcitui l d in dou11 clu:uil(.> bistobl lo a.tl mctrlce 11011/1 clrculte biJtolnlc 1imftrlce, un genc rato r 11 curCflot ronsl11t1t, uu d rcu il de co mand 1 111 yenn1atore lul de curent <:0t1S lan t, en tircu l

balsn1 l1mt mo n011tabl l, un circuH de ali,aro analoglcll con~tltui t dl11U"-un vca lt mi!:lrn e!«• lro nic, re.,117ut c u un tuuuisto r c u cfed de cl 111 1• ,1 cu un t r.11u:i1t or n n slablll• :totor par11111c tr lc $1 un circull d c al imc11· lampA alimPnllllfi p r i n nlf lt! tra nzi,1oare. l" r ln i,oof)u l l•J: Umlcrll ~l schhnb5r ll 1,ra mdur dt• mAiUfll lt, gmer a toru l de currnt constunt ett (! allmtll tar prin in- llnn OOml ,inul d,v1.mr !fi 0 TCti9lel1Ul alf$l" prln lnwr ~ iul u nui com11i:1tor, " lnr p(ntru m.lrlr1·a {IN"!l7h•I ~ 1nA.,mr11r,,, ~In t u lifüale dou, dkide llmin l!;CCl1le. Part of the experimental equipment realized for obtaining the doctor of science title. 1987 - Babe~-Bolyai University, Cluj-Napoca ~- - . - „ .,• • • ~ - ,IWnh ~--••~ Lnvtl -· . ----~ A7 ~] :.!~~-:!~ !oO= ,J ,J -- . Measurement method and equipment for measuring the chemical shifts for the impulse operated N.MR

equipments Electronics Technical High School, Oradea Parallel Input-Output (PIO) OSIM Patent - 1989 0 0 L Nr. • 0 • """-" ., , , ,rA; , 0 !- J ll TUll:JrL LEGII IIUl!YlffLOR Dl llfHTII. ou1„ IJ nu I.Ull!JlRII DIIPfttmtrl U:GllKUT.iH iL (1:IUD Dllt:);I, tOStT!SD IXIIIIMIRU 00ll)ITULOR IZGUi, UlJIIBl.l,ll PllllPJTfL IRITIT Dl ITTEmB. Df1UT,I, nl.:i&ILIT!TII Wf1Tru1 Dl Ill1lTIE B:hl1 Dl 20 il1 Dl U om Dll"Qlffl111. 8fl BlZ!IITl fllrTlBD TUJIUll ,1,Jl"lLI aun:m ClU~TH1 rmuerin II srrn~aa.a &ln DBlmt llfU.1ilf D! llílllU,Tjl! l IJTIJT111 SI Dl 1 llTllllrl TIITJLOH Pilllf!J.RU FOLOSJHll XUl C:OJl8BrULJUKJIJ JflSTIU Pl Bl ,UTOII.Jtlff! SJ lI TIIUTOBnl, B0100IIL DtSfallRU ITTlfflll. BlfllDUllBD1 XI OIKIXIIU llPLm,Tifl JlSOTtSt KI r.wftffl tTFGRUTl OIX PlllllfflL Dll1T Dl Dftffll The PIO realized access to the µP data bus, after building it, I have managed to connect it to the computer most of the experimental equipments. Suddenly

a new world opened up in front of me with endless possibilities . l11ll.LJI lXVUTTUlllJ,Olt 11W il" t1WT MlllXTl rmm1 HTI lSíBISPIIDliic:IUlBI. TITlL.rnn Bnl!!!nll~ Dl Jlll,TI!, Measurement center I started building the measurement system of the free fall in 1989, and made progress little by little . Recently, I started a serious renewal: it will be installed an optical measurement gauge will be installed, readable only with a microscope. The precision will be 1/1000 mm! Computer controlled school bell (has been working since 1991) ,1 ,1111~1 1 11 ,.,:illmll 11 ll : 41 : ■ 11 ,1:1„1, 1,.,,,1 "I· 19 •l. l jll 111!1 11 ll ,. l lt1CNtc l ll mii 11) •• p1rtftll?1J: I u ::11:• 51,-.c PNea Dt t. IXIT Studying the free fali with a stroboscope (8 working groups) 1 1 11 , ~ ( 1 11 ~ 1 1 ~~1---;r . · 1 1 ::t. 1 1 1 :.-i;:--· We flashed the free fallen ball twice: at the start and at a precisely measured time. The human

eye "photographs" the two positions and this way we can def ine the gravitational acceleration. • 1 )/ ·r i I I .r 1{~ IL / While the students measure the position of the ball at the second flash and the record the data, we set the next flashing interval. ~. , , -:: .• ,· Everyone builds their own electroscope The simulation is in the background, the created signal and the speaker is in the front The basics of radio is the AM - amplitude modulation The schema is in the background, the created signal and the small radio is in the front Decaying oscillations of the RLC series circuit The measuring equipment and computer simulation The composition of two parallel oscillations - the beating phenomenon The two sound signal are on the bottom scope, while their sum is on the upper scope and inthe speaker The composition of two orthogonal oscillations - the Lissajous curves The two sound signals can be heard in the speakers and they add up in our

ears. On the upper scope are the signals, while on the bottom scope is their sum. The monitor in the bottom left corner shows the computer simulation. The resonance of the RLC series circuit ·t ; . ~ •, r The voltage and current signals of the RLC series circuit system shortly before the resonance. The resonance of the RLC parallel circuit The voltage and current signals of the parallel RLC circuit system on the resonance The resonance of the RLC series circuit (8/14 working groups) The minimal deviation of light through the prism Siemens LGR 7631A - laser HeNe (5 mW) The light ray symmetrically passes through the prism. The analytic derivation of the formula is on the board (can not be seen). Standing waves in a the red-hot nickel wire In the upper side there is a one and five spindle standing wave. You can see the excitation system ín the bottom left corner Recording the magnetized curve of steel (14 working groups) lf•· r !:lf .:- ----- . ,,~

-~~,--·l!"~ 1 ·", -~~.a;# .&,, • - ~ - . . ~- - - -:.-~ , . , • / ~ 1 ,. • . ~· " ·- - - - ,., :".,wj, We pre-magnet a transformer and meanwhile we measure the secondary voltage, which is proportional with the derivative of the magnetized curve. If we integrate the equation, we will get the magnetized curve Determining e/m with the magnetron method (14 working groups) ~ - = - - - -.- ~ , AI --). t 1 1 H .,;;;;;,J A magnetic f ield forces the electron on a circular orbit. By increasing the magnetic field, the curvature of the path will decrease, and at some point the electron will not reach the anode. " . . l-. ~ Calorimetric experiment series (14 working groups) Computer-cot1trolled air-cushiot1ed it1clit1ed Rlane, start , számítógép-vezéreli mé~Orendszer a mechanikai , mozgásOk t ·anui"mányozá!!>ára. :· Építés-fejl-esztés: 1987-2018 Az 5, csoport mérési eredményei :

t[5J 5[1111 tC5l 5[rr11 tC51 s[rr,J tCs1 sCITl1 0. 0 000 0.000 22. 0 500 0.314 44 . 0718 0.660 66 . 0884 1.006 1. 0 012 0.000 23. 0 512 0.330 45 . 0726 0.676 67 . 0890 1.021 z. 0.028 0.000 24. 0523 0.346 46. 0735 0.691 68 . 0897 1.037 3. 0122 0.016 25. 0535 0.362 47. 0743 0.707 69. 0904 1.053 4. 0167 0.032 26. 0546 0.377 48. 0751 0.723 70. 0910 1.068 s. 0.202 0.047 27. 0557 0.393 49. 0759 0.739 71. 0917 1.084 6. 0231 0.063 28. 0568 0.409 50. 0767 0.754 72. 0923 1.100 7. 0256 0.079 29. 0578 0.424 51. 0775 0.770 73. 0930 1.116 8. 0280 0.095 30. 0589 0.440 sz. 0.782 0.766 74. 0936 1.131 9. 0301 0.110 31. 0599 0.456 53. 0790 0.801 75. 0943 1.147 10. 0321 0.126 32. 0609 0.472 54. 0798 0.817 11. 0339 12. 0357 0.142 0.157 33. 0619 34. 0628 0.487 0.503 55. 0805 56. 0813 0.833 0.849 13. 0374 0.173 35. 0638 0.519 57. 0820 0.864 14. 0390 0.189 36. 0647 0.534 58. 0827 0.880 15.

0405 0.205 37. 0657 0.550 59. 0835 0.896 16. 0420 0.220 38. 0666 0.566 60. 0842 0.911 17. 0434 0.236 39. 0675 0.582 61. 0849 0.927 18. 0448 19. 0462 20. 0475 0.252 0.267 0.283 40. 0684 41. 0692 42. 0701 0.597 0.613 0.629 62. 0856 63. 0863 64. 0870 0.943 0.959 21. 0487 0.299 43. 0710 0.644 65. , lleszt3gorbe egy másodfokú po li nomfugguény j+ . / + / + + + + + + + // . = + / + ,. . ~ + /+ +/ ·+· / ~/ ~ 0.1 0.2 0 .3 0.4 0.5 0.6 0.7 0.8 0 . 9 tCsJ 0 .6 0.7 0.8 0.9 t[sl vlrn ✓ sl 0.1 -, : start 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 tcsJ Az 5. csoport rnérési eredményei Rendre rneg-rajzoljuk az új grafikonokat SPACE CON T Az 5, csoport mérési eredményei : o. 1. z. 3. 4. s. 6. 7. 8. 9. 10. 11 , 12. 1 3, 14. 15. 16 . 17. 18. 19. 20. 2 1. t[s1 s[ m1 t[s1 0.000 0.012 0.028 0.122 0.167 0.202 0.23 1 0.256 0.280 0.30 1 0. 321 0. 339 0. 357 0.374 0.390 0.405 0.420 0.434 0. 448 0.462 0.475 0,487 0.000

0.000 0.000 0 . 016 0.032 22. 0500 23. 0 5 12 24. 0523 zs. 0 535 26. 0546 27. 0557 28. 0568 29. 0578 3 0. 0589 3 1. 0599 32. 0609 33. 0619 3 4 . 0628 0.047 0.063 0 . 079 0.095 0. 110 0. 126 0. 142 0. 157 0. 173 0. 189 0.205 0.220 0.236 0.252 0.267 0.283 0.299 35. 0638 36. 0647 37, 0.657 38. 0666 39. 0675 40. 0684 41. 0692 42. 0 7 01 4 3. 0710 tC s 1 s[ m] 0.718 0.726 0.735 0.743 0.751 0.759 0.767 0. 775 0.782 0.790 0.798 0.805 0.813 0.820 0.827 0.835 0.842 0.84 9 0.856 0.863 0.870 0.660 0.676 0.691 0.707 0 .723 0.739 0.754 0.770 0.786 0.80 1 0.8 17 0.833 s[ m] 0 .314 0.330 0.346 0 .362 0.377 0.393 0. 4 09 0 . 424 0. 440 0. 4 56 0. 4 72 0 . 4 87 0 .503 0.5 19 0.534 0.550 0 .566 0.582 0.597 0.613 0.629 0.644 44. 45 . 46. 47 . 48. 49. 50. 51. sz. 53 . 54 . 55. 56. 57, 58. 59. 60. 6 1. 62. 63. 6 4, 65. ~I ~ uCm/s ] s[ m1 66. 67 . 68. 69. 70. 7 1. 72. 73 . 7 4. 75 . tCsJ s[ m] 0.884 0.890 0.897 0.904 0.9 10 0.9 17 0.923 0.930 0.936 0.943 1 , 006 1 1 1 1 1 0 .8 1 , 116 +

1 , 13 1 0,849 0.864 0.880 0.896 0.911 0.927 0.94 3 0.959 -.- ~ • •7 + / /f. /✓ // 0 .4 / ·/ Original measurements 0 0.1 o.z 0. 3 0 ,4 0 .5 0.6 0,7 + + + o.s 0.6 0.8 0,9 tcs1 aCm/s2] 3 .0 + ~/ + /,./ 1. 5 + 0 .6 0 .2 .,/ / z.o + 1 , 100 1 , 147 ·/ I 1. 0 .02 1 ,037 , 0 53 , 068 ,084 2 .5 z .o + ,/· -,,.,/-" 1.0 + 1 / 1 o.s + ./ 1. 5 / =- . 0. 5 Original measurements 0 0.1 " : start 1. 0 Original measurements 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 o.z 0. 3 0 .4 0.9 t[s1 A gyorsulás uá I tozásának grafikonja. A gyorsulásnak gyenge maximuma uan, a mozgás uá I tozáan gyorsu Iá 0.7 o .8 0.9 tCs1 a[m1s2 l a= -O,Z66E-OM2 +0 ,Z36E-01t+Z,645E+OO [s,m1s2 ] l Z,5 tstart z.o 0 sAr = P4 l Maximum in t=0,444 s tia1astart= 0,19x. Original measurements +: ,~~---+-~~~~-+-~~~~,-~~---,-~~~--+--~~~-+-~~~~+-~~~~, .----~~~-~ 0,9 0 " : start A gyorsulás változá::.ának kinagyított

grafikonja A gyar::ulá::nak gyenge 1T1axirrmrr1a van, a rnozgás változóan gyorsuló t[s] :Dz.81il(ll Lfo~(liil, 1l11t1(J(,11I fizikum • GC1!1Sl Z.75 z.so z.zs Z.00 1.75 1 .50 ~ t ri P.":f ·; ~ 1. ZS 1.00 0 .75 o.so o.zs 0 Computer-controlled thermometer and measuring probes Studying the adiabatic status change with computer-control led thermometer When compressing the air, the thermistor in the syringe will heat up AD~ tMdre Líceum Nagyyárad • , t u•c1 • 30.6 38 --X 3b ,. : + 34 [~·,. ~ 32 + 30 + 28 + 1 + + + + + + + + + + ~ l:~-·. .1 ". + + + 2b 24 + 22 + + + + + + + + + + + + + 9 .b 20 ~. , sran z 3 5 b 7 8 9 Ót(~] 1 ADY fndre Líceum, Nagyvárad rJ j 1 •"" >i = 648 ,5 nn A= 8,54SE-15; B = 16.31 ; h =6 ,66E-34 J,s :,: i.= A•exp(B •U) 0 . 50 ·~ U=1.9ZZ U 0 .25 ( • 0 0 I start 1.00 1. ZS 1.50 1.75 z. oo z.zs U[VJ

líJÍf Determining the Planck constant (8 working groups) Before the lab exercise with the help of the spectroscope, we define the wavelength of the light emitted by the LASER-diode, after that using energetic consideration we calculate the Planck constant. Determining the energy gap of an intrinsic semiconductor (8/14 working groups) . ~ ,: . 4 +--------r--- ~ -------,<-----+---------, 2 +-----+----------,------+---------, -2 +--- -/, ----+------+---------, -6 - - 1 - - - - - + - - - - - + - - - - + - - - - - - - - - i 0.000 0.001 0.002 0.003 1/(T[K]) We place the thermistor together with the thermometer in hot oil and by constant stirring we record the change in resistance to the temperature Verification of the laws on external photoelectric effects Ninta : Állo &nynéu: Zl53490B ,PCT 225 Néret: 14155776 byte A mérés kezdete : Z011 ,09 ,09 , ZO :36:0B Összes beiltés: 353B944 200 . 175 . 150 125 75 50 25 0 0 „ start .• 5000

10000 15000 20000 25000 30000 35000 "inta: Állo 1ánynéu : Az állomány nérete: A1érés kezdete : Összes beUtés : A nérés teljes ideje: ldoközosztások száma: "or1ált összes beütésszá n: "or1ált ualódl be Utésszá n: Legnagyobb bo nlási ldoköz : AG"·cso holtideje : 100 : 90 : 80 : 70 : •1: 14155776 byte Z011 ,09 ,09 , Z0 :36 :08 3538944 47868 s 500 intervallu m 55,991s 56,741s 60 50 40 30 20 10 0 0 „ start 10 15 20 25 30 35 40 G[~s) 45 ,, ~ ESC DI IT Relativity theory in a nutshell. Az ét ertöl Hirosimáig CsOtörtotc délutAn az Ady Endre Ucet.1m fizi Mottó: az elméleti fizikusok csak a kísérletezök mérései alapjá11 építhették fel az új Fizikát kalaborjában Al. éterta Hiroslmilg clmmtl rendl1.9yó fizikaóra volt A1 el6adás kOIOnle· oesséQe abban .illt, hogy egy Xll-es diMc a tehet5ges Nagy Z50lt magyarbta el negy- ven percbe sOrrtve tiztn6t fizjkaóra tananyag.il FelkkrltO t·anára dr

8arlos-Elebs lst• ván, az Ady fizikatanára voft, akNel ~om napig állították össze az e&d.isban eff,,angKI lanJnyagot, iletvt tábtára lrtik a k~~ teket M magyarázatokat Nagy Zsolt. az Ady Endre Líceum éttanu~ e$6adásAban nemcsak felkkzü~ de beszédkészségé,61 is bizonyságot tetl El6adasában kOtetleoOI beszélt többek között az otyan nehéz fizikai tbnákról, mint az éttr $étez6e, a rel.ativitúttmélel a dinamika törvénye vagy az atombomba feltaWása ~@w@l~&1@W@ 1r~a~@tr&1 Előadást tart: NAGY Zsolt, L2004C ,,.;,, dr BAUOS-ELEKES Imi Fizikum, 200g. jú11ius 5-é11 délutá11 6 órától Mi11de11 érdeklö°dot szeretettel váru11k One student will sum up in one hour the materials studies in the previous months. The task is simple: explain the main physics points of the complex formulas, so everyone can understand it. It turned out great! From the ether to Hiroshima (Relativity theory ina nutshell) -• =--r The student chooses to explain

the details of the derivation ina way in which only the important steps are mentioned, but it should be understood as a whole. From the concept of the supposedly existing ether through the demonstrable and irrefutable experiments, he/she should get to the sure negation of the ether hypothesis and he/she must construct the new physics. From the Lorentz transformation to the mass defect, everything must be deduced. Selection f rom experimental tasks of the data processing competition , , :: The contestants will see an experiment where the results do not quite match the results studied in school with simplified theories. Moreover, some of the results are contradictory. In some cases, there is unknown phenomenon that needs to be explained. The students are expected to solve the apparent contradictions based on the received data series. ~chwJqqg The "interrogation" of a stroboscopic snapshot y[c.m] +5 ~ = ,

-+----+---+---f---+---f---+---+--+----i---l--+---+---+---+----+-------,f---l-- •• =t•r-< • ~=~ ~ , 1 n· A = = • -+----+-------t----ie--+---+----+----+----+-+--+--+-----+-- rl .,----, , , lli -t • c::::==-c =, . •=• = ~ = •-.,, , , • U , , ---<--1---1--1---;-- • • • • • ,. 111 •1 1•~ ~ 1--~• r --~•··••••11111111 •l i,•Jid~-:-, : , .~ 1 r l-+~~+~•~:---.1~•~-~iI :••;-Jr--4,·,-µ•-i~,•- ic+n!- A•.1R• -l~ii Q 1 L t, ,t i U, , 11 . :l l fj 1 e:::= ~.= • 1 1 ! n• 1 1 J t t •~ 1t I t 11" 1: ~ • 1 , : 11 ~-- , •• • , 1 •• - ,u . 1: 1 • ~t 1-lii !, ]. ; t :: 1 111 1 . 1 :y 1 I" -n--+---+--,--t------+li-- •· , ,- >-ii.: :;,e) , , :1 , •, i- :&dl 11 1111111 • - - t -• ,,• • • t •• - C. t-C -[!!!!! =-- =--= =•· ~• ~1, ··==" ~ ~ ff • 1 - ,. . 1 . -,, .:v 1 1 1 1

.1 - I,, ,, .,,, 11 . 1 -1- -- ·- -. ·[ 1 ,, 1111 1111 ,, i - 1 1,., , , 11 ~ ,n. llhllll dl II i , :, , 111111 • ., ■ IJIIIDll--.i 1 " m11• , I J 1 DU , 1, , • . ,,, 1 --,f----t--t--+------t--J--t----+--t----+---+--+----+--t---+---+---+-- 41 x(cm] ~chwJqqq The interesting measurements of the external photoelectric effects . -· 1qg5 - PhotoC Apparatus .:•- - ~chw2003 Volume control potentiometer - - - r - -•-•-----·--- ------·•·· . . SCI-IWARTZ 2003 SCI-IWARTZ 2003 Premiul „TRIODA " TRIÓDA-díj in in in out out out 240 - 270 I I 30 30 30 Schw2003 ~chw.2004 Studying the thermal behavior of the thermistor -- . : / - .,!Jt· gchw.2006 Experiments with electro-dynamic speakers ~chw.2007 Black box with passive electric quadrupole --~. - ~· =- . , ~chw2ooq Def ining the specif ic charge of an electron with magnetron method e ~chw2010 Studying the elastic

pendulum with a computer-controlled measurement system ~ 1 ,•---.e: - -·~ I ADY Endre L1ceum T=SZZ. 7ms ·- -- . ,, . , ·- • ~chw2011 Simple experiment with a direct current black box -- -------1 Black box :1 : : ~chw2012 Unf inished experiment with one syringe and one CNC thermometer ~chw.2013 Another experiment with the black box RXN-303D-II DC ,owER SU„LY A, r V, A■ aXN•lUD-1 V• ~chw2015 Lob exercise with intrinsic semiconductor ~chw2016 Accelerated motion on inclined plane ~chw2017 Back to the unfinished experiment with a syringe and a CNC thermometer The basis of every computer-controlled measurement The pas2Tpu is a collection of procedures and funct ions realized over 25 years of programming development. I tried to solve those problems, which were considered unimportant by the Borland Company, but in my opinion are important, or which were inexistent during the time. The 2178 procedures and functions are grouped in 97 units

based on their logical cohesion. These nested units can call each other, so during compilation one must follow the correct order. This problem is solved automatically by a proprietary software. Introduction page of Computer-controlled stroboscope software ADY Endre Líceum, Nagyvárad tsott Eleetro"ies r,. ,,c ,.i~ ~ Fizikum 1 ••••••••• 1 1 1 1 PTer.t to The relativity of the path from the eye of the standing and moving observer 1 • • • • • • • 11• . • • • •• •• • • • • 11111111111111111111~ • • • • • • • • • • • n I • • • • • • • 11• n 11 111111mn • • • • • • • • • • • n11n11n11nn11n11 -~•-•· .,- In the upper side is the paths of the free fali, in the bottom you can see the circular motion The moment of inertia (constant time interval photography) The acceleration of the right system is far

greater than the acceleration of the left system. The moment of inertia (constant space interval photography) The acceleration of the right system is far greater than the acceleration of the lef t system Standing waves in vibrating strings Nodes and antinodes; the lowermost is the refraction of the standing waves The interference of the waves on the surface of the mercury (Youngs experiment) The free movement of the pendulum was stopped . Thani< you f or your attet1tiot1 l For the ge11tleme11, here is a stroboscope bouquet ,, I l , , , Morouo - lq"76 1 ~ , . .-;~ . h com ,. . beistvan@ya oo. dr. Bartos- Elekes Istvan -