Informatika | Távközlés » Fizikai réteg

Alapadatok

Év, oldalszám:2007, 57 oldal

Nyelv:magyar

Letöltések száma:126

Feltöltve:2010. április 24.

Méret:1007 KB

Intézmény:
-

Megjegyzés:

Csatolmány:-

Letöltés PDF-ben:Kérlek jelentkezz be!



Értékelések

Nincs még értékelés. Legyél Te az első!


Tartalmi kivonat

2. Fizikai réteg 2.1 Elméleti alapok 2.11 A fizikai csatorna jellemzői Az adatok átvitele egy fizikai csatornán mindig a csatorna fizikai jellemzőinek mértékében bekövetkező változással történik. Megváltoztathatjuk az áramkörben a feszültséget, az áramot, a frekvenciát, a fázisszöget. Jelhordozó lehet a fény intenzitása, vagy akár a felszálló füst megszakítása is (indián füstjelek). Az adatátvitel távolságát a jelek gyengülése, és a csatorna zaja befolyásolja. Információ forrás Adó Csatorna Vevő Cél üzenet Zaj forrás 2.1 ábra Kommunikáció általános modellje A csatorna legfontosabb jellemzői: • sávszélesség • zaj • kódolási eljárás. Sávszélesség alatt általában az átvitt legmagasabb és legalacsonyabb frekvencia különbségét értik, ahol a frekvencia átviteli függvény 3 dB-el csökken. A valós rendszerekben a sávszélességet műszaki eszközökkel korlátozzák, az alsó és felső

határfrekvenciánál meredek levágás van. Jó közelítéssel azt mondhatjuk, hogy a sávon belül van jel, a sávon kívül nincs jel. A szokásos telefonhálózat sávszélessége 3000 Hz. Szerencsére az előfizető és a központ közti szakasz levágási meredeksége nem éles, amit sok rendszer kihasznál. 29 A csatornán másodpercenként bekövetkező jelváltások száma a jelzési sebesség (signalising rate) vagy baud. Egy jelzés azonban több bitet is hordozhat Ha a jelzési szintünk pl.: +3V, +1V, -1V, -3V, akkor egy feszültségszínt 2 bitet kódolhat H. Nyquist határozta meg (1924) egy csatorna maximális adatsebességét a sávszélesség és a jelzési szintek száma alapján: Max adatsebesség =2H*log2V H a csatorna sávszélessége V a jelzési szintek száma . Pl.: egy 16 állapotú kódolást használó rendszer telefon vonalon elérhető sebessége Max sebesség = 2*3000log216=60004=24000 bit/sec Látszólag tehát egy csatornán a jelzési szintek

számának növelésével tetszőleges mennyiségű adat továbbítható. Józan műszaki érzékünk azt sugallja, hogy nem lehet így. A jelzési szintek egy idő után nem megkülönböztethetőek a zaj miatt A zajos csatornára dolgozott ki Claude Shannon (1948) elméletet, mely szerint a Maximális adatsebesség = H*log2(1+S/N) H a csatorna sávszélessége S/N a jel/zaj viszony Ez abszolút korlát, amit kódolási trükkökkel nem tudunk növelni. Nézzük példaként egy szokásos 30 dB jel/zaj viszonyú telefonvonalon elérhető sebességet ( 30dB = 1000szeres jel/zaj viszonyt jelent ). Max sebesség = 3000* log2(1+1000)=3000log1001/log2 ≅ 30000 bit/sec 30 A kapott eredmény jól illeszkedik az ismerős 28.8 kbit/sec MODEM sebességhez A megfontolásból az is látszik, hogy nagyon nagy zaj mellett is lehetséges adatátvitel, de alacsony sebességgel. Az űrszondák jelei esetenként ezerszer gyengébbek, mint a háttérzaj, ennek ellenére lehetséges az

adatátvitel. 2.12 Vonalak megosztása A tényleges fizikai összeköttetéseket nevezzük a következőkben vonalaknak. A fizikai összeköttetésen létrejövő összeköttetéseket, melyeken az információk áramlanak nevezzük csatornáknak. A legtöbb kapcsolatban egy csatorna nem foglalja el folyamatosan egy vonal kapacitását, tehát célszerű egy vonalon több csatornát létrehozni. Előfordul ennek a fordítottja is , mikor több vonalat használunk fel egy összeköttetés nagyobb sebességű kiszolgálására. A vonal megosztása lehetséges előre rögzített módon, vagy forgalomtól függően. Ha minden bemeneti csatornához rendelünk egy kimeneti csatornát, akkor ezt multiplexelésnek nevezzük. Multiplexelésnél az adatvonal előre rögzített módon kerül felosztásra. A csatornák nem versengenek a vonalért. Torlódás nem tud keletkezni a vonalon, mert a csatornakapacitások rögzítettek, és nem tudják egymás kapacitását megszerezni. A multiplexelés

két szokásos módja : frekvenciaosztásos és az időosztásos. A frekvenciaosztásnak az az alapja, hogy egy összegzett jelből szűrőkkel le tudjuk választani az összetevőket. A rádióvevőnk antennáján az összes bejövő jel összege van jelen. Ebből válogatjuk ki szűrőkkel az egyes komponenseket (állomásokat) A távközlésben ezzel analóg, hogy a csatornák jeleit egy-egy vivőre (mintha különböző rádióállomások lennének) ültetjük rá. A vivőfrekvenciák lehetnek néhány kHz tartományban, vagy többszáz MHz-es tartományban is. Az időosztásos módszernél minden elemi adatcsatorna periodikusan egy-egy időszeletet kap. Az időszeletekbe egymás után helyezzük el a bemeneti csatornák adatfolyamainak egy-egy meghatározott hosszúságú darabját. Vevőoldalon az időszeletek sorrendjében helyezzük el a darabokat a kimeneti multiplexer tárolóiba. 31 Ha szinkronizáljuk a bemeneti és kimeneti kapcsoló egységeket (multiplexer /

demultiplexer) , akkor a két végpont számára az adatcsatorna olyan jellegű, mintha egyedül birtokolna egy vonalat. A vonalak kihasználtsága ezzel a módszerrel nem túl jó, hiszen a nem használt csatornák is foglalják a vonalkapacitást. A vonalak legjobb kihasználását az üzenetkapcsolt és csomagkapcsolt rendszer biztosítja. A csomagkapcsolásnál (üzenetkapcsolásnál) a csomagok mindig abban az irányban haladnak, ahol a vonalon van szabad kapacitás. Ha több párhuzamos út létezik, akkor a csomagok párhuzamosan is haladhatnak. A jó vonalkihasználtság sajnos azt is jelenti, hogy a csomagok a vonalon torlódhatnak, ha ugyanarra a csomópontra több irányból is érkezik csomag, és a sorrendjük is felcserélődhet. A vevőoldalnak kell gondoskodni a sorrend helyreállításáról. Egy nem túlterhelt csomagkapcsolt hálózat a folytonos kapcsolat látszatát teremti meg a felhasználónak, ha a csomagbeérkezési statisztika nem mutat nagy szórást. A

vonalkapcsolt rendszerekben különböző végpontokat kötünk össze a végpontok számánál jóval alacsonyabb számú közös használatú vonallal. A vonalak használata egy-egy összeköttetés ideje alatt kizárólagos, más összeköttetés nem tudja használni. A vonalkapacitások kihasználása a közös használatú (központ-központ) szakaszon sem optimális, mert nem tudjuk kihasználni az információáramlásban bekövetkező szüneteket. Egy emberi beavatkozással vezérelt végpont ( PC ) általában a vonalkapacitás 3%-át sem veszi igénybe átlagosan. 32 2.13 Távközlő hálózatok kapcsolástechnikája A távközlő hálózatokban az adatátviteli út használatának jellege szerint • vonalkapcsolt, • üzenetkapcsolt, • csomagkapcsolt, rendszerekről beszélünk. Vonalkapcsolt a rendszer , ha a forrás és a cél között állandó, fizikai kapcsolat jön létre. A vonal lehet rézvezeték, rádióhullám, fény, bármi A legfontosabb

jellemző az, hogy a kapcsolat az információtartalomtól függetlenül fennáll. A telefon kapcsolat pl ha létrejött, létezik, független attól, hogy beszélünk vagy sem. A végpontokat összekötő útvonalat az adatok továbbítása előtt kell létrehozni. A kapcsolni kívánt végpont lehet foglalt, és nem jön létre az összeköttetés. A kapcsolat létrejötte után azonban nem lehet torlódás, más állomás nem tudja megszerezni a vezérlést. A két végpont között a késleltetéseket csak a vonal tulajdonságai szabják meg. Ez valós idejű alkalmazásoknál döntő szempont lehet. h í v á s f o g a d á s i je l D AB tr ö n k h í v á s k e z d e m é n y e z ő je l C BC tr ö n k k i m e n ő tr ö n k k eres é s e B CD tr ö n k v o n a li k é s l e l t e té s A t e lje s á t v i te l i i d ő Id ő a d a tá t v i te l le b o n tá s 2.5 ábraVonalkapcsolás Az ábrán látható, hogy a kapcsolat felépítés ideje jelentős lehet.

Analóg rendszerekben 30 másodperc is lehet. Az adattovábbítás után a vonal lebontásáról is gondoskodnunk kell. Az üzenetkapcsolt rendszer tulajdonságai a levélhez hasonlóak. Nem kell a forrástól a célig vezető utat egyidőben felépíteni. Mindig a következő csomópontba 33 juttatjuk el az üzenetet. Az üzenet fejrésze tartalmazza a forrás és célcímet A célállomásnak nem kell bekapcsolva lenni, mikor az üzenetet elküldjük. A csomópontokban megvárjuk a teljes üzenet végét, ellenőrizzük a hibátlanságot, aztán továbbítjuk. Ez a „tárol és továbbít” (store and forward) eljárás Az üzenetek tárolása miatt az üzenetkapcsolóknak nagy tárolókapacitással kell rendelkezni. Az üzeneteket túlságosan nagy helyfoglalása ellen úgy védekezhetünk, hogy a korlátozzuk afelhasználók maximális területfoglalását. Tipikusan üzenetkapcsolt rendszer az e– mail. Üzenetkapcsolt rendszer a hagyományos távíró is. Itt fizikailag

is megjelenik az „üzenet” a nyomtatott távirat formájában Host D sorbanállási késleltetés C B üzenet fejrész A vonali késleltetés Idő 2.6 ábra Üzenetkapcsolt rendszer Az üzenet méretét elvben semmi sem korlátozza, így a routereknek beláthatatlan méretű pufferekkel kellene dolgozni, továbbá egy üzenet hosszú időre foglalttá tudna tenni egy irányt. Ezért fejlesztették ki a csomagkapcsolási eljárást A mai adatátviteli rendszerekben az IMP-k között csomagkapcsolt az átvitel, és az IMP további tevékenysége határozza meg a működés jellegét. Ha a teljes üzenet beérkezése után kezdjük meg a továbbítást a következő csomópontra, és az üzenet tetszőleges (természetesen korlátozott) ideig a csomópontban marad, akkor ez üzenetkapcsolt rendszer. A csomagkapcsolt (packet switching) hálózatban az adatblokk méretének felső korlátot szabunk. Ez elsősorban a routerek számára jelentős, mert így a csomagok

helyfoglalása nem léphet túl egy meghatározható értéket, a csomagok az operatív tárban tárolhatók. 34 D D3 E1 D2 E4 D1 B4 E2 B3 E3 B1 B2 A4 A3 A1 C3 A2 C2 C1 S E3 P2 C2 C3 P2 B2 D P2 P1 E4 E2 P1 B3 B1 P1 P2 A3 A1 P1 P2 S Id ő 2.7 ábra Csomagkapcsolt átvitel Az adatátviteli vonalak nem foglalhatók le egy alkalmazás számára hosszabb időre, így alkalmasak interaktív alkalmazások (ember-gép kapcsolat) megvalósítására. A csomagkapcsolt rendszerben hatékony a vonalak kihasználása. Több rendelkezésre álló útvonal esetén párhuzamosan is haladhatnak az adatok. A veszteség oldalon könyvelhetjük el, hogy a csomagok eláraszthatnak egy IMP-t, annyira, hogy az csomagokat veszít. A csomagok sorrendje változhat az átvitel során. Egy később indított csomag korábban beérkezhet ( A 27 ábrán erre látunk példát. A B3-E2 útvonalon haladó csomagot megelőzi a B2-C-E3 útvonalon haladó csomag.) A csomagok

szélsőséges esetben sokáig bolyonghatnak a hálózatban, és az utolsó hiányzó megérkezéséig nem állítható össze az adatblokk. Belátható, hogy korlátoznunk kell azt az időt, míg a csomagokra várunk. 35 A meg nem érkezett csomagot egy idő után újra kell adni, és gondoskodni kell arról, hogy a régi megsemmisüljön. Vannak időkritikus alkalmazások, ahol a várakozást korlátozni akarjuk, és megengedhető a csomagok néhány százalékának elvesztése. A megvalósíthatóság elemzésére készíthetünk egy csomagbeérkezési statisztikát. Ha a csomagok beérkezési ideje nem mutat nagy szórást, akkor jelentős veszteség nélkül korlátozhatjuk a maximális várakozási időt. csomag beérkezési csomag beérkezési gyakoriság gyakoriság összeállít összeállít eldob eldob idő idő minimális beérkezési idő minimális beérkezési idő csomag élettartam csomag élettartam 2.8 ábra Csomagok beérkezési gyakorisága Egy csomag

legrövidebb beérkezési ideje az optimális útvonalon létrejövő késleltetés. Ennél korábban nem érkezhet csomag Lesz egy átlagos beérkezési idő, majd egyre csökkenő gyakorisággal érkeznek a protokoll által meghatározott maximális időtartamig. Később nem érkezhet csomag, mert megsemmisül az 36 időszámláló lejáratakor. Ha a csomagok jelentős része (98%-a) beérkezik a maximálishoz képest nagyon rövid idő alatt, akkor a később érkezőket egyes alkalmazásoknál eldobhatjuk. Ezt az elvet követi pl a csomagkapcsolt hálózaton létrehozott telefon szolgáltatás. A telefon jellegéből adódóan a vevőoldal nem várhat 10-20 másodpercet a csomagok összerakására, legfeljebb 0,5-0,6 másodpercet. A csomagok nagy része ezen az időtartamon belül megérkezik. A hiányzó csomagok a beszéd érthetőséget rontják, de a természetes redundancia miatt az érthetőség megmarad, és a késleltetés is elfogadható szinten tartható. A

kapcsolási módok tulajdonságainak összefoglalása: Jellemző Vonalkapcsolt Üzenetkapcsolt Csomagkapcsolt Dedikált vezetékes útvonal Van Nincs nincs Rendelkezésre álló sávszélesség Állandó Változó Változó Tárol és továbbít működés Nincs Van Van A csomagok útvonala Állandó Változó Állandó Kapcsolat felépítés Van Nincs Nincs Torlódás lehetséges ideje Kapcsolat felépítés Bármelyik Bármelyiks üzenetnél csomagnál Nem igen Cél állomás lehet-e foglalt? Igen A távközlési útvonalak kialakításában fontos szerepük van a központoknak, illetve az ott elhelyezett kapcsológépeknek. A legegyszerűbbnek látszik, hogy egy mátrix két éléhez rendeljük az összes állomást, és a kapcsolat létrehozása a közös mátrixpont bekapcsolását jelenti. Ezen az elven működik a keresztpontos kapcsológép. A kapcsolás létrehozható félvezető eszközökkel , vagy relékkel 1 2 3 5 6 1 2 3 4 5 6 2.9 ábra

Keresztpontos kapcsológép elve A kapcsológép mérete az állomások számának négyzetével arányos. Valójában elegendő a mátrix felét megvalósítani( a főátló egyik oldalát), de ez sem változtat 37 azon, hogy a méretek nagyon hamar kezelhetetlenül naggyá válnak. Jelentősen csökkenteni lehet a méreteket, ha több ilyen rendszert egymás után kapcsolunk. Az egyes részek előválasztást végeznek, nem a célállomást, csak a célok egy csoportját jelölik ki. Az előválasztás azonban számottevően rontja a számmezők kihasználtságát. Ha kiválasztottuk egy csoportot, mondjuk a 72-es körzetet, akkor függetlenül attól, hogy ebben a körzetben 10 vagy 100 000 telefon van, „elhasználtuk” a számmezőt. A digitális félvezető technikához és logikához közelebb áll az az időosztásos kapcsoló. Az időosztásos kapcsoló (Time division switch) mérete az állomások számával lineárisan nő. időréscserélő bemeneti vonalak 0 n

kimenő vonalak bemeneti keretek n darab időrés kimeneti keretek számláló n darab k bites szóhosszú RAM tároló 0 n n szavas leképzési tábla 2.10 ábra Időrés cserével működő kapcsológép A bemeneti vonalakon lévő digitális információt (kereteket) egymás után elhelyezzük egy-egy időrésben. Ha „n” bemeneti vonalunk van és egy keret „k” bitből áll, akkor egy keretcsoport tárolásához n * k szavas tárra van szükség. A kapcsológép lényege az hogy a tárolóból a keretek beírási és kiolvasási sorrendje eltérő lehet. 38 A kimenő oldalon az időrések sorrendje megváltozik a leképzési táblában megadott sorrendnek megfelelően. Az „n” kimeneti vonalra az időrések sorrendjében kiküldött keretek számára ez olyan, mintha a megfelelő vonalakat összekötöttük volna. A kapcsoló méretet az korlátozza, hogy egy bemeneti keretnyi idő áll rendelkezésre a feldolgozáshoz, ha nem akarjuk a kapcsolóval lerontani

a vonalak teljesítményét. A keretidő idő alatt kell „n” keretet kell beírni és kiolvasni a pufferből. Példaként válasszunk egy ATM-T1 keretet, ami 125µsec hosszú. Ha egy memória művelet T= 60 nsec-ig tart, akkor a bemeneti vonalak száma n=125µsec /2T =125*10-6 / 6010-9 ≅ 1000 lehet, mivel a beírási és a kiolvasási időt is figyelembe kell vennünk. Nagyobb rendszerekben tehát itt is szükség van az előválasztásra, hogy a vonalszámunk kielégítően nagy lehessen. A keresztrudas kapcsolóhoz képest a javulás drámai, hiszen ugyanekkora kapcsolót fél millió mátrixponttal lehetne megvalósítani. 2.2 Az adatátviteli közeg Az átviteli közegnek két nagy csoportja: - vezetékes (réz, optikai szál) - vezeték nélküli (rádió, laser sugár, magneto-optikai hordozó) A legegyszerűbb adatátviteli módszer, ha a hordozóra (kazetta, mágnesszalag, optikai lemez) rögzített adatot átvisszük egy másik számítógépre. Nagytömegű adat

mozgatásánál valószínűleg gyorsabb megoldás, mint a leggyorsabb hálózat. A rézvezetékes összeköttetések jelentőségét az adja, hogy a földön lefektetett kábelekkel többszörösen el lehetne érni a holdat. Hatalmas beruházás, aminek az értékét igyekeznek megőrizni. A vezetékben gyors jelváltozások vannak, ami azt jelenti, hogy a vezetékeink antennaként sugároznak. Az egyszerű párhuzamos vezetőkből álló kábelnek nagy a csillapítása, és erősen sugároz. 39 A megoldás a koax – kábel és csavart érpár. 2.21 Koax - kábelek A koax – kábelek külső köpenye jól árnyékolja a belső eret, ha megfelelően földeltük. Külső vezető 2.2 ábra Koax kábel szerkezete 2.11 ábra Koaxiális kábel szerkezete A koax – kábel főbb jellemzői: - hullám impedancia - csillapítás a frekvencia függvényében - késleltetési idő A szokásos hullámimpedanciák 50, 75, 93, 110 ohm. Kereskedelmi forgalomban több GHz -en

használható kábelek is kaphatók. Meghatározó a szigetelő anyag minősége. A késleltetési idő alacsony értéke lenne kívánatos a hálózatokban. Ezt a szigetelés permittivításának csökkentésével tudjuk javítani. Gyakorlatban az lenne jó, ha légszigetelést alkalmaznánk. Technológiailag ez nyilván megvalósíthatatlan, de olyan kábel ahol a középső eret csak egy spirális kitámasztás tartja, realizálható. A számítógép hálózatok koax-kábeles megoldásai 2001 januárjától nem szabványosak az épületkábelezési szabványok szerint, de még nagyon sok helyen fogunk velük találkozni. 2.21 Csavart érpáras kábelek 40 A csavart érpár két összesodort vezeték, meghatározott csavarás számmal. A sodrás biztosítja, hogy az érpár környezete felé szimmetrikus legyen, így alacsony a sugárzása. Ez egyben azt is jelenti, hogy a környezeti zavarokat is erősen csillapítva veszi fel. 2.12 ábra Csavart érpár mágneses mezeje Az

(A) esetben egy differenciál módusú zajáram folyik az ereken. Az áramirány ellentétes, így a (H) mezők iránya is ellentéte, és az eredő zavaró tér elvileg nulla. (B) ábra azt mutatja, hogy egy külső (H) - tér a kábel két erében ellentétes feszültséget indukál, amik kioltják egymást. Nagyobb frekvenciákon ez a mezőkioltó hatás kevésbé érvényesül az induktív impedanciának köszönhetően. A GHz–es tartományra szánt kábelek kettős árnyékolással, egy fólia és egy szövött árnyékolással is el vannak látva. 41 2.13 ábra Cat6 árnyékolt, csavart érpáras kábel (S-FTP) A szokásos fali és lengő kábel 4 ér-párat tartalmaz. Az érpárok lazán össze vannak sodorva a kábelen belül, hogy a szimmetria jobb legyen a külvilág felé. Vannak sok erű kábelek is, ezeket a rendezőszekrények között szokták használni. A 4 érpárból általában 2 érpár van használatban. Nagy előnye a technológiának, hogy azonos módon

kezelhető a digitális telefon és a számítógép hálózat. Az ISDN főkészülékhez 4 érpárnak kell menni. 2 érpár tápfeszültséget ad a központból, 2 érpár a kommunikációé. A kábelek fontosabb jellemzői: • frekvencia tartomány • hullám-impedancia (100 ohm) • áthallás az érpárok között ( frekvenciafüggő) • csillapítás/100méter a frekvencia függvényében • jelterjedési sebesség (átlagosan 200m/µsec) • futási időkülönbség az érpárok között , 100 m-en (<50nsec) A katalógusokban megadott legfontosabb villamos jellemzők: A felhasználás körülményeit még sok további paraméter írja le, melyek egy részével a „kábelezések mevalósítása” fejezetben foglalkozunk. A kábeleket a használható maximális frekvencia szerint osztályba soroljuk Category 1 – Category 7-ig. 42 Az adatátviteli rendszerekben használt kábelek tipikus alkalmazásai, és névleges frekvenciahatár: CAT1 hangátvitel 100KHZ

CAT2 nem gyakori 4 MHZ CAT3 Ethernet 10MHz CAT4 nem gyakori 20MHz CAT5 Fast Ethernet 100MHZ CAT6 Fast Ethernet 200MHz CAT7 Gigabit Ethernet 600MHz A szabvány a jellemzőket jóval szélesebb frekvenciasávban definiálja, hiszen a kódolási eljárásból adódóan 10Mbit/sec sebességű Ethernet alapfrekvenciája 20MHz, a 100Mbit/sec sebességű ETHERNET alapfrekvenciája 200 MHz. A kábelgyártók a szabványban rögzített frekvenciahatárokat lényegesen túlteljesítik. A CAT5 kábelek jellemzően 350MHz-ig, a CAT6 kábelek 750MHz-ig használhatók. A helyzet „törvényesítésére”, a CAT6 „javított” változataira a szabványosító szervezetek több javaslatot tettek. A jegyzet aktualizálásakor (2006 január) még nem volt döntés a javaslatokról. Eltérés az elvárt NEXT értékekben van Az alábbi táblázat a frekvencia függvényében mutatja a javasolt értékeket. MHz 100 200 300 350 500 ISO/IEC New Class E -40 -35 -31 -29 -28 NEXT (dB)

TIA Augmented -40 -35 -31 -29 -26 ISO/IEC TR -40 -35 -31 -29 -22 43 100 200 300 350 500Mhz -20 NEXT (dB) -25 -30 ISO/IEC New Class E TIA Augmented -35 ISO/IEC TR -40 -45 2.14 ábra Javasolt NEXT értékek a javított CAT6 kábelek számára A CAT6 javításának két fő mozgató rugója van. Az egyik az, hogy a készülékeken alkalmazott csatlakozók CAT6-nak felelnek meg. A CAT7-es szabvány csatlakozói ettől eltérnek, így CAT7–es hálózatban hibrid készülékkábelek szükségesek. A másik egy jelentős beruházás védelmi szempont. Jelenleg több millióra becsülhető azoknak a végpontoknak a száma, melyek teljesítik a javasolt specifikációt. Ezek a hálózatok alkalmasak a (még nem szabványosított IEEE 802.3ae) 10Gbit/sec sebességű adatátvitelre rezes hálózaton. Az aktív elemek gyártói számára ez nagy üzlet, a felhasználók számára pedig a kábelhálózatuk megtartása jelent előnyt. A frekvenciamenet teljesítése nem okoz

túl nagy nehézségeket a gyártóknak. A gyakorlati felhasználás szempontjából azonban legalább olyan fontos, hogy a kábelek érpárai mennyit szórnak a szomszédos érpárokra, illetve a külső zavaró terek mennyire hatnak a kábelekre. Ha mind a négy érpárt használjuk, akkor egy érpárra a másik három érpár zavarásának összege jut. Zavarást jelent az együttesen futó kábelek egymásra hatása is. Paradox módon műszakilag kedvezőbb a „kábelsaláta”, mint a szépen rendezett kábelköteg A rendezetlen köteg a 600MHz-es tartományban 5-10 dB-el kevesebb kölcsönös zavarást okoz, mint a rendezett. A magasabb frekvenciatartományban üzemelő rendszereknél (500-600 MHz) a nagy csillapítás miatt a jelszint vevőoldalon kicsi, ezért a környezetből érkező zajok csillapítása is fontos, hogy megfelelő jel/zaj viszony legyen elérhető. A külső zavarok csökkentésére nem elegendő a csavarás és a hagyományos árnyékolás. A legújabb

megoldások közül néhány: 44 Az érpárok egymásra hatása csökkenthető, ha az érpárok távolságát növeljük. A kábel erek között távtartó van, mint az alábbi ábrán látható. A bemutatott kábel CAT-6e kategóriájú, UTP, 750MHz-ig használható. 2.15 ábra Gigabites átvitelre tervezett sodrott érpáras kábel A közös módusú zajok csökkentésének eszköze, ha a kábel árnyékolásán kívül, egymástól szigetelve, mintegy 2 cm hosszúságú fólia árnyékoló gyűrűket helyezünk el. A szokásos megoldású árnyékolás antennaként működik, és az árnyékoláson folyó áram feszültséget indukál a belső erekben. Ezt a hatást csökkentjük az árnyékolások rövid szakaszokból álló felépítésével. A rövid szakaszok kevésbé működnek antennaként, de a belsejükben a tér homogén, így a közös módusú zajelnyomás javul, és a földelési problémákkal sem kell foglalkoznunk. Az összeköttetés (számítógéptől –

számítógépig) frekvencia-átviteli tulajdonságait „A-tól – F-ig” sorolja be a szabvány. (A kábelezés pl megfelelne 100 Mbit/sec átvitelhez is, de a végpontokon Cat 3 – as csatlakozók vannak, akkor az összeköttetés nem „D”, hanem „C” minősítést kap, mert a végpontok között az 45 alacsonyabb frekvenciahatású csatlakozók fogják meghatározni az átviteli tulajdonságokat. Az összeköttetési osztályok frekvenciahatárai ISO 11801 szerint: A 100KHz B 1MHz C 16MHz D 100MHz E 200MHz F 600MHz Az épületkábelezés előírásait a TIA/EIA 568 szabvány tartalmazza. A szabvány részletesen szabályozza az épületen belüli kábelezési megoldásokat, továbbá az épületek közötti kábelezés fogadásához szükséges szekrények helyét, javasolt méretét. Jelenleg csak a csavart érpár és a fényvezető szál javasolt új épületekben A tipikusan koax –kábelt használó alkalmazások is elláthatók csavart érpáros

kábelezéssel. A videó rendszerek általában koax kimenettel vannak ellátva A koax és a csavart érpáras szakasz közé elhelyezett szimmetrizáló (balun) transzformátor biztosítja az illesztést, és ezzel megoldott a jeltovábbítást a csavart - érpáras hálózaton. 46 2.14 ábra RGB jel továbbítása csavart érpáron 2.23 Fényvezető-szálas kábelek A fényvezetős technológia határai a megvalósított rendszerekhez képest igen távoliak, jelentős tartalékok vannak az optikai átvitelben.Elméletileg 50 000 Gbit/sec sebességű hálózatok is építhetők. Laboratóriumi méretben 100 Gbit/sec sebességű rendszerek már léteznek. A gyakorlatban 1 – 2 Gbit/sec sebességet érnek el az optikai hálózataink. A korlát az elektromos/optikai jelátalakító sebessége. A fényvezető szál működésének alapja a fény visszaverődése a határfelületről, ha a beesési szög nagyobb a határszögnél. 2.15 ábra Teljes visszaverődés 47 A

határfelület két eltérő törésmutatójú anyag határa. Ez lehet üveg – üveg, műanyag – műanyag, műanyag – üveg. Technológiailag az azonos anyag, eltérő törésmutatóval kombinációk használatosak a hőtágulási problémák miatt. Ma egyeduralkodó megoldás az üveg mag, üveg köpennyel. Kísérletek folynak műanyag szálakkal is, de egyenlőre csak néhány helyen kerültek alkalmazásra, kis távolságokon. műanyag védőburkolat (0,9 mm) primer burkolat (műanyag, 0.250 mm ) köpeny (cladding, 0,125 mm), üveg mag (core), üveg 2.16 ábra Az optikai kábel egy erének metszete: Javítani lehet a mechanikai sajátosságokat, ha a külső műanyag burkolat is kétrétegű, belül egy puhább szilikon, kívül kemény nylon van. A szokásos kábelek 2 – 24 eret tartalmaznak. A fény egy része elnyelődik a kábelben. A csillapítást döntően az anyag tisztasága és a hullámhossz befolyásolja. 5 4 3 2 1 800 1000 1200 1400 1600 Hullámhossz

(nm) 2.17 ábra Egy „átlagos” optikai kábel csillapítása 48 A fényvezető-szálak típusai: „Multimode” az a szál, ahol a fény többféle úton is célba érhet. Különböző szögben éri el a visszaverő felületet. Multimode step Index szál Kimenő amplitúdó Bemenő amplitúdó fény útjai az optikai szálban forrás idő idő 2 .18 ábra Multimode , éles optikai határfelületekkel rendelkező szál A bemenő impulzus a kimeneten „szétkenődik” a különböző futási idők miatt. Ez a „szétkenődés” a hosszal arányos, így a kábel frekvencia átvitele ( GHz*km) egységben adható meg. A szokásos magátmérő 50µm és 62,5 µm Ezzel az átmérővel a sávszélesség 1 GHz*km nagyságrendű. Olcsósága, és főként egyszerű szerelhetőségük miatt terjednek a műanyag fényvezető kábelek is. Főként potenciál elválasztás, vagy a villamos zavarok csökkentése miatt alkalmazzák a műanyag kábeleket. A sávszélesség

jellemzően 1MHz*100m. A fénysugár akkor is benntartható a szálban, ha nem egy éles határfelület, hanem a közepétől fokozatosan csökkenő törésmutatójú szálat hozunk létre. A legkedvezőbb, ha a szál törésmutatója parabola jellegűen változik. Ekkor a fény közel szinuszos pályát fut be. A futási időkülönbség kisebb, mint az előző esetben Tovább javítja a helyzetet, hogy monokromatikus fény esetén fellép egy kioltási jelenség is, csomópontok jönnek létre. A szokásos sávszélesség 1,5-2GHz*km. 49 Multimode graded Index szál Bemenő amplitúdó Kimenő amplitúdó optikai szál idő idő 2. 19 ábra Fény útja parabolikusan változó törésmutatójú szálban A futási időkülönbség nyilvánvalóan csökken, ha a szál átmérőjét csökkentjük. Ha a szál átmérője a hullámhossz nagyságrendjében van (8-9 µm ) , akkor gyakorlatilag egyenes vonalú terjedés lép fel, egyféle módon terjed a fény. Ezek a

„monomódusú” szálak. Monomode step Index szál Bemenő amplitúdó Kimenő amplitúdó fényvezető szál forrás idő idő 2. 20 ábra Fény útja monomódusú optikai szálban A monomódusú szálak sávszélessége 30-120 GHz*km. Elméletileg ennél nagyobb sávszélesség is megvalósítható, és jelentős kutatás folyik ezen a területen. Nyilvánvaló, hogy egy adott hullámhosszúságú fénnyel egy éren egyirányú összeköttetés hozható létre. Egy duplex összeköttetés így 2 eret vesz igénybe Mód van arra, hogy egy időben különböző hullámhosszúságú (színű) fényt használva több összeköttetést létesítsünk egy kábelen, hullámhossz multiplexelést megvalósítva. A be és a kicsatolás bonyolultsága miatt azonban csak kivételesen alkalmazott eljárás a multiplexelés. A hálózati eszközök jelölésénél száloptikás technológiák a „Fibre” után „F” jelet kapnak. ( pl 100BaseF = 100Mbit/sec sebességű optikai szálas

eszköz) 2.24 Vezeték nélküli átvitel A vezeték nélküli átvitel a hálózati megoldások rendkívül dinamikusan fejlődő ága. A nagytávolságú vezeték nélküli átvitel elsősorban azokon a helyeken fontos, ahol nincs kiépített infrastruktúra, vagy számítunk az infrastruktúra megsemmisülésére (katonai alkalmazás). Kisebb távolságokon a sűrű beépítés lehet gond Egészen kis 50 távolságokon a kényelem és a mobilitás lehet a fő mozgató erő. ( A szobában bárhol lehet a számítógép, a nyomtató nem kell dugdosni, cipelni.) Lézer, infravörös átvitel Külső helyszíneken rendkívül gyorsan telepíthető, nehezen lehallgatható összeköttetés hozható létre 100-1000 méter távolságra. Ködben esőben erősen lecsökkenhet a hatótávolság. Az infravörös eszközök többsége napfényben nem használható. Az állomások telepítésénél gondosan kell eljárnunk, mert az adó kis mozgása, vagy a fény eltérítése (pl. a

felmelegedő falról felszálló meleg levegő eltérítheti) az összeköttetés megszakadásához vezet. Rádiós összeköttetés Nagy távolságok hidalhatók át közbenső állomások nélkül. (Gondoljunk a klasszikus távíró rendszerekre). Az átviteli sebesség relatíve kicsi Az összeköttetést légköri zavarok, ionoszféra zavarok befolyásolják. Fő előnye az állomások mozgékonysága. Kis távolságok esetén a GHz tartományban működő rendszerekkel 10Mbit/sec sebesség könnyen elérhető. Nem kell kábelezni, gyorsan telepíthető. Egy épületen belül pl: a konferenciateremben is elérem a szervert, a saját gépemet egy előadás közben. Az utóbbi időben rohamosan terjednek a néhány méter hatósugarú rendszerek. A cél a kábelek elhagyása, kényelmes használat szobán belül. ( Telefon-számítógép – nyomtató, számítógép – egér, stb.) A mikrohullámú tartományban (2-40 GHz) irányított antennákkal megbízható, nagysebességű

összeköttetések hozhatók létre. Az állomásoknak optikailag látni kell egymást. A telepítéskor tornyok, vagy magasan fekvő pontok szükségesek. Főként a magasabb frekvenciatartományokban az eső és hóesés jelentősen ronthatja az átvitelt, ezért helyettesítő útvonalakat terveznek be. A szokásos távolság az állomások között 30 – 100 km. Nagyobb távolságok esetén közbülső, reléállomások beiktatása szükséges. Rendkívül gazdaságos, versenyképes megoldás. Egyedüli hátrány, hogy most már hiány van kiosztható frekvenciasávokban. Műholdas rendszerek . A műhold egy jelismétlő, ami a felküldött jeleket más frekvencián visszasugározza. 51 Egy műholdon átlagosan 12 – 20 u.n transponder van, egyenként 50Mbit/sec átviteli sebességgel. A bonyolult követő antennarendszerek elhagyása érdekében a műholdakat geostacionárius pályára állítják, így a műhold állni látszik a földről nézve. Ha a nyalábolási

szögeket figyelembe vesszük, akkor 180 db műhold helyezhető el. A magasabb frekvenciatartományokban 20/31 GHz (17,7 – 21,7 GHz le irány / 27,5 – 30,5 GHz fel irány) elvileg 10 – ra is lehetnének a műholdak, megduplázható lenne a számuk. Ebben a sávban azonban jelentős az eső, felhőzet által okozott csillapítás. A műhold nagyobb területet is besugározhat (TV adás), vagy pont-nyalábot (spot beam) is sugározhat. A spot beam csökkenti a lehallgathatóságot Az egyedi terminálok számára kifejlesztett műholdas rendszer a VSAT (Very Small Aperture Terminál) ( Nagyon kis nyílásszögű antennájú berendezés) A készülékek kicsi, 1 m átmérőjű antennával vannak felszerelve, kicsi adóteljesítménnyel (1 W). Megjelenésük annak köszönhető, hogy a műhold tud nagy teljesítménnyel adni, ami elegendő egy kis antennával szerelt vevő számára. A földi állomás kis teljesítménye (jel/zaj viszony!) miatt a felfelé irányuló csatorna

sebessége alacsonyabb, 19,2 kbit/sec, a lefelé irányuló 512 kbit/sec. A VSAT rendszer vezérlését egy földi állomás, u,n. HUB végzi A VSAT terminál jelei földi állomás – műhold – HUB – műhold – földi állomás utat járják be. Így a késleltetési idő a szokásos (geostacioner pályán) 270 msec helyett 540 msec. (Egy nyugta több mint 1 másodperc múlva ér vissza !) A VSAT előnye az olcsóság. Egy állomás telepítése néhány százezer forintból megoldható. Folyamatos összeköttetés elvileg fenntartható alacsony röppályás műholdakkal is, ha mindig van a látómezőben műhold. 77 műholddal lefedhető a teljes földfelszín A projekt innen kapta az „Iridium” nevet. Az iridium a 77 elem a periódusos rendszerben. A műholdak száma végül 66-ra módosult, de a név maradt Egy-egy műhold 48 pontnyalábot sugároz, és így 1628 cella alakítható ki. A frekvenciák jól kihasználhatók, mert két cellával odébb ugyanaz a frekvencia

már használható. A földi állomás közvetlenül kommunikál a műholddal, így a föld bármely pontjáról lehet összeköttetést teremteni. Az alacsony röppálya (kis távolság) lehetővé teszi, hogy kis teljesítménnyel, kézi készülékekkel forgalmazzunk. 52 Mobil- telefon re endszerek k A mobil telefon re endszerek fejlődését „generáció ókba” szokkták soroln ni. 1G Ana alóg hang (AMPS) 2G Digiitális hang ( GSM, CD DMA, D-AM MPS ) 2 G A GSM 2,5 G techno ológia tová ábbfejleszte ett digitáliss megoldássai (GPRS S) 3G Nag gysebesség gű digitáliss átvitelt megvalósító ó eljárások,, 3 G Nag 3.5 gysebesség gű digitáliss átvitel (HS SDPA 1.8--144Mbit/ssec) A 4. ge enerációs rendszerek r k fejlesztésse folyamatban van. Több T műkö ödő megoldás is van, me elyek közü ül a „győzte es” még ne em jósolha ató meg. Az első ő mobiltelefon rendszzerek telep pítése 1946 6-ban kezd dődött St. L Luisban. Az analóg

rendszerű ű mobiltelefon kapaciitása kicsi volt v és bárrki lehallga athatta. Az újab bb rendsze er, az Adve enced Mob bile Phon System S l98 82-től van ü üzemben. Ez E a felhaszználói területet 10 – 20 2 km átmé érőjű „cellá ákra” osztja a. A „cellákk” azért előnyössek, mert a szomszé édos cellákkat kivéve ugyanaz u a frekvencia a más cellá ákban haszná álható. Ado ott frekvencciasáv ese etén a cellá ák méretén nek csökke entésével az a összekköttetések száma s lényegesen megnövelh m ető. A kise ebb cellaméret lehető ővé teszi azz adási teljjesítmény csökkentés c sét. (Tipiku usan max. 0,6 W a kézi telefonnál) Egy cella a szomszédaival együtt ( össszesen 7 cella) alkot egy csop portot. A csoport c a frekve encia-kioszztás szempontjából jelentős, j mert m ez defiiniálja a „szzomszédot”. omszédai: "A" szo D,E,F B,C,D "D" szo omszédai: A,C,F,B,G,E 2.21 á ábra. Szomsszédos

cellák 53 A rendszer 832 duplex csatornát használ. 824 – 849 MHz frekvenciatartományban az adócsatornák, 869 – 894 MHz között a vevőcsatornák vannak. (A központ oldaláról nézve) 2.22 ábra AMPS frekvenciasávjai Az állomások kb. 15 percenként regisztrálják magukat a központban, hogy „tudja” a rendszer a mozgó állomások helyét. Az AMPS analóg rendszer, és elég nehéz a csatornák összefogása nagyobb sávszélesség érdekében. Az európai gyártók fogalmaztak meg egységes elveket a digitális mobiltelefon – rendszerre, ez a GSM (Global System for Mobile communications). (Európában korábban ötféle analóg rendszer volt forgalomban). A 900 MHz-es sáv 124 csatornára van osztva, és ezen belül idő multiplexelést használ. Egy csatorna 200 kHz széles, és a csatornát 8 időrés osztja tovább a felhasználók számára. Elvileg 8X124=992 csatornát támogat a rendszer. Az interferenciák miatt egy cellában legfeljebb 200 duplex

csatorna használható, így a valós teljesítmény elmarad az elméleti értéktől. A többi sávon is 200kHz a csatorna sávszélessége, és az időosztás is azonos. A sáv idő-multiplex felosztása nyilvánvaló előnyökkel jár a tisztán frekvenciamultiplex megoldásokhoz képest. Egy állomáshoz több időrés hozzárendelése nagyságrendekkel egyszerűbb (tisztán digitális feladat), mint több analóg csatorna összefogása, így egyszerűbben hozhatók létre nagy sávszélességű összeköttetések. GSM rendszer frekvenciasávjai (2006) : 54 Tartomány Mobil állomás adás / Bázis állomás adás GSM 400 450.4 – 4576 MHz / 4604 – 4676 MHz vagy 478.8 – 486 MHz / 4888 – 496 MHz GSM 850 824 – 849 MHz / 869 – 894 MHz GSM 900 880 – 915 MHz / 925 – 960 MHz GSM 1800 1710 – 1785 MHz / 1805 – 1880 MHz GSM 1900 1850 – 1910 MHz / 1930 – 1990 MHz Harmadik Bázis állomás adás (BTx) 2110 – 2170 MHz Generáció Mobil állomás

adás (MTx) 1920 – 1980 MHz 3G Time Division Duplex 1900 – 1920 MHz A GSM rendszerben lehetséges a vonalkapcsolt és a csomagkapcsolt hálózat megvalósítására is. Hang-hívásnál van hívásfelépítés, és csatorna a tartalomtól függetlenül rendelkezésre áll. A csatorna az összeköttetés ideje alatt foglalt A működés így vonalkapcsolt jellegű. A cellahatárokon az átadás idejére ( ≈300 msec) a szolgáltatás megszakad, majd a másik cella átveszi az összeköttetést, és a kapcsolatot visszaállítja. A jelenleg használatos GSM technológiák HSCSD (High Speed Circnit Swithed Data) A HSCDS az időszeletek összekapcsolása egy felhasználó számára (cocatenating). Az összeköttetés vonalkapcsolt jellegű A sávszélesség az összekapcsolt időszeletek számától függ. Általában 2 + 2, ami 28 kbit/sec + 28 kbit/sec fel és letöltési sebességet eredményez. A sebesség a vonalkapcsolt jelleg miatt állandó. A vonalkapcsolt jelleg az

üzemeltetési költségeket is növeli a GPRShez képest Nem minden szolgáltató és készülékgyártó támogatja a HSCDS-t GPRS ( General Pachet Radio Service) 55 Szabványosított része a „GSM Phase 2+”-nek. Az első csomagkapcsolt implementáció a GSM rendszerben. A sávszélességet több időszelet összekapcsolásával növeli. Egy logikai csatornában 9,6 kbit/sec - 14,4 kbit/sec az adatátviteli sebesség. A sebesség a hibák számától függ A lehetséges 2*8 időszelet 115 kbit/sec sebességet biztosítana mindkét irányban, de ezt nem használják ki. A kereskedelmi rendszerekben egy felhasználó 2-5 aktív szeletet kaphat. A szokásos megoldásban 1 fel és 3 letöltés irányú időszeletet kap a felhasználó. (Átlagos sebesség: letöltés 8 – 12 kbit/sec, letöltés 24 – 36 kbit/sec .) Ha van hangátviteli igény, és nincs szabad csatorna, akkor az adatátviteli csatornák időszeletéből vesz el a vezérlés. A sebesség adatátvitel közben is

változhat A készülékekben az időszeletek lehetséges kiosztását a hardver is behatárolja, amit a készülékek „Multislot Class” besorolásából tudhatunk meg. Jelenleg 12 osztály van definiálva. (Pl: NOKIA 6310 Class-6 osztályú 2 fel / 3 le vagy 3 fel / 2 le irányú csatornával használható, ha a szolgáltató is támogatja a csatornák programozható kiosztását.) EDGE (Enhanced Data rates for GSM Evolution ) Új modulációs eljárás alkalmazásával 384 kbit/sec-re emeli egy GSM csatorna elméleti átviteli sebességét. Nevezik Enhanced GPRS-nek is (E-GPRS) A modulációs eljárás érzékenyebb a zajokra, mint a korábbi eljárások. HSDPA (High-Speed Downlink Packet Access) A HSDPA protokoll, az UMTS (Universal Mobile Telecommunications System) bazisú 3. generációs rendszerek továbbfejlesztése Az egyik perspektivikusnak tűnő technológia a fejlesztések közül. A jelenleg (2006 december) alkalmazott letöltési sebességek 1.8 vagy 36Mbit/sec Az

elméleti határ 14.4Mbit/sec A rendszer jól kihasználja a rádiócsatorna lehetőségeit. A technológia 3 alappillére: Adaptív moduláció és kódolás Minden állomás a jel minőségétől függő, egyedien szabályozott kódolási sémát használ. Fast Packet Scheduling A felhasználói egységek másodpercenként 500-szor adnak, amiből a bázis állomás megállapítja a jelminőséget. A bázis állomás ennek ismeretében változtatja a csatornakiosztást és a kódolást. 56 Hibás keretek gyors újraadása a bázisállomás oldalról A vevőoldal a hibásan vett kereteket is tárolja. A hibásnak jelzett keretet az adó más kódolási sémával küldi, mint az eredi adatot. Ha az újraadott keret vétele hibátlan, akkor az eljárás befejeződött, ha nem, akkor a két hibás keret összevetéséből megpróbál egy hibátlant előállítani ( „incremental redundancy” koncepció). A GSM nagyon összetett rendszer. Az alaprendszer definíciós leírása több

mint 5000 oldal. Az egyes fejlesztések szintén több ezer oldal dokumentációt jelentenek 2.3 Adatátviteli módszerek 2.31 Analóg és digitális átvitel A korábbi rendszerekre az analóg technológia volt jellemző. Az analóg jelátvitelnél a csatornában a jel gyengül, és zajok adódnak hozzá. A zajtól a jelet nem tudjuk „megszabadítani”. Az erősítők a jelszintet helyreállítják, de a zajtartalom marad.(Periodikus zaj esetén, vagy valamilyen ismert tulajdonsága miatt tudjuk a zajt csökkenteni. Ha a jel periodikusan ismétlődik, szintén javítható a jel/zaj viszony) A digitális átvitel fő jellemzője, hogy a jeleknek csak diszkrét értékei létezhetnek. A jeleket, ha felismerhetők, nem erősítjük, hanem regeneráljuk. Helyreállítjuk a jelszintet és időzítést is. Soha nem szabad megfeledkeznünk azonban arról, hogy az átviteli csatornában a jel mindig analóg. A jelet a csatorna valamilyen fizikai jellemzőjének mértéke hordozza .

Frekvencia, fázis, amplitúdó, vagy több jellemzője együttesen. A digitális jeleket MODEM-ek alakítják a csatornákban használt fizikai jellemzőkké. A MODEM a modulátor – demodulátor kifejezés összevonásából keletkezett. Szűkebb értelemben a MODEM - ek alatt a telefonhálózaton használható jelátalakítókat értik. A MODEM működését funkcionális protokollok írják le: • modulációs protokollok • hibajavító protokollok • adattömörítő protokollok 57 2.32 Modulációs protokollok A modulációs protokollok írják le, hogy a fizikai közeg mely jellemzőjét, és hogyan változtatjuk a digitális jelsorozat átvitele érdekében. Amplitúdó moduláció . Klasszikus példája a távíró, ahol van-jel=1, nincs-jel=0 konvenció hordozza az információt. Nagyon kis teljesítménnyel nagytávolságú rádióösszeköttetések hozhatók létre, mert lassú átvitelnél nagyon keskeny sávszélességgel realizálható. (A kis

sávszélesség kicsi zajteljesítményt jelent a csatornában.) Az optika kábeleken a fény intenzitása hordozza az információt, szintén van/nincs jelleggel , rendkívül nagy sebességgel. A rézvezetékes összeköttetéseken feszültség értékeket rendelhetünk bitkombinációkhoz. A frekvenciamoduláció a vivő frekvenciáját változtatja meg. Az egyes állapotokhoz diszkrét frekvenciák tartoznak. A távbeszélő sávban szokásos frekvenciák a 213 ábrán láthatók. telefonv onal sáv szélessége A-B irány 1070 Hz (0) 1270 Hz (1) B-A irány 2025 Hz (0) 2225 Hz (1) 3000 Hz 300Hz 2.23 ábra Teljes duplex átvitel telefonvonalon A rádiókommunikációs rendszerekben használatos megoldás, hogy egy amplitúdó modulált jel vivőfrekvenciáját változtatják néhány száz Hz-en belül. Ez lehetővé teszi, hogy az AM adás mellett, annak zavarása nélkül vigyünk át digitális információt ugyanazon a csatornán. ( 20 MHz környéki vivőn 100 Hz

eltolást a normál vevőkészülék nem érzékeli, a speciálisan erre kialakított vevő dekódolja az adást. ) A telefonhálózaton működő MODEM - ek gyakran alkalmaznak fázis modulációt (2.25 d ábra) Egy állandó frekvenciájú szinuszos jelhez képest váltogatjuk a jel fázishelyzetét. Egy fázishelyzet több bit információt is hordozhat, attól függően, hogy hány fázishelyzetet 58 különböztetünk meg. A fázison kívül az amplitúdót is modulálhatjuk Így egy állapot 4 bitet kódol. (224 ábra) Ezt a kódolási elvet használva tovább növelhető a megkülönböztethető állapotok száma. Ha a vektorok végpontjait egy rácson helyezzük el (trellis), elérhető 64 vagy 128 állapot is. (A zajkorlát itt is érvényes!!) A 64 állapot 6 bitet kódol. 128 állapotú rendszerben 6 hasznos bitet szoktak kódolni, és a 7. bit paritásbit 2.24 ábra 8 állapotú rendszer (a), 16 állapotú rendszer (b) 59 ( a ) digitális jel ( b ) amplitúdó

moduláció ( c ) frekvencia moduláció ( d ) fázis moduláció 2.25 ábra Alapvető modulációs protokollok 2.33 Hibajavító és adattömörítő protokollok A hibajavító és adattömörítő protokollok logikailag az adatkapcsolati réteghez tartoznak. A MODEM - en belül megvalósított eljárásokat mégis célszerű itt tárgyalni, mert a MODEM a felhasználói rendszer számára átlátszó, a fizikai rétegen belülinek látszik. A vezetékes rendszereken használt eljárásokat a MICROCOM cég dolgozta ki, a DoD megrendelésére. A jelölésük: MNP1 – MNP10 (Microcom Networking Protocol). 60 A fontosabb protokollok: Az MNP-4 eljárás csomag jelleget ad az átvitelnek. Vannak ellenőrző bitek, és nyugtázó csomagok is. Némi tömörítést is tartalmaz az átvitel A 2400 bit/sec-os MODEM 2900 bit/sec-ot érhet el MNP-4 alatt. A legnépszerűbb eljárás az MNP-5. Ez futás-hossz alapú tömörítést tartalmaz Az egymás mögött álló azonos karakterek

számát viszi át. „Röptében” (valós idejű) tömörítés, és nem ismeri fel a már tömörített állományokat. Az MNP-5 szabványú eszközök kötelezően ismerik az MNP-4 protokollt is. Az átviteli sebességet átlagosan megkétszerezi az eljárás. Az MNP eljárások gyakorlatilag változtatás nélkül kerültek a szabványba. CCITT MODEM szabványok: A szabványok az adatátviteli sebesség folytonos növekedését mutatják. A készülékek egyre jobban megközelítik az elméletileg elérhető értékeket. V. 21 300 bit/sec, duplex, frekvenciamodulált. (Gyakorlatilag minden telefonrendszeren át használható, általában akusztikus csatolóval). V. 22 1200 bit/sec, duplex, frekvenciamodulált. V. 22 bis 2400 bit/sec, duplex V. 23 600/1200 bit/sec, félduplex Rendelkezik egy 75 bit/sec sebességű „szolgálati” csatornával. (Ipari vezérlésekben használatos). V. 24 A MODEM és terminál közötti interfész fizikai szintjét (villamos jelek,

csatlakozó kiosztás) definiálja. Az amerikai megfelelője az EIA – RS232C. V, 32. 9600 bit/sec sebességű, duplex, szinkron. Kombinált amplitúdó és fázis-modulációt használ. Bitcsoport kódolás: 16 szintű, nem redundáns, vagy 32 szintű, redundáns (trellis). V. 42 Redundáns kódolást használó eljárás, ami a hibák egy részét javítja. Saját tömörítő eljárást (Ziv és Lempel 1977) használ. Szükség esetén ismétlést kér. Ha az ellenállomás nem ismeri a tömörítő eljárást, akkor MNP-4 szerint működik. 61 V. 42 bis Maximum 4-szeres tömörítést lehetővé tevő szabvány. Csak azonos modemek között (V42bis szabványú) működik. Az előzetes tömörítést nem ismeri fel, attól függetlenül működik. A digitális telefonhálózaton használt csatolókártyák (ISDN) és az analóg modemek nem tudnak közvetlenül együttműködni a legtöbb hálózaton. ISDN kártyával csak olyan helyre tudunk csatlakozni, ahol az

ellenállomás is ISDN kártyát használ. Belátható, hogy a konverzió a központban megvalósítható lenne. (Van olyan szolgáltató, ahol ez meg is valósul), de nem általános a sebességillesztési nehézségek miatt. A fejlődés irányai A szélessávú rendszerek iránti igény kábeles megoldása elvileg két utat követhet. A fényvezető kábelek elvihetők a felhasználóig. Ez a Fiber To The Home rendszer A másik megoldásnál az utolsó szakaszon felhasználjuk a kiépítet rézvezetékeket, és egy közeli elosztó pontig visszük az optikai kábelt. Pillanatnyilag ez a rendszer (Fiber To The Curb) tűnik olcsóbbnak, ahol már van kiépített infrastruktúra. 2.34 Kódolás alapsávú rendszerekben Lokális hálózatokon belül az adatátvitel jórészt szélessávú kábeleken, vivőjel nélkül történik. A digitális információt úgy is ábrázolhatjuk a vonalon, hogy logikai "1"-nek pozitív feszültségszint, a 0”-nak 0 volt felel meg.

Könnyen beláthatóm hogy ez nem szerencsés, mert a vonalon egyenáramú komponens jelenik meg, ami a transzformátoros vagy kapacitív csatolásoknál nehézséget okoz. A kódolástól elvárjuk, hogy a műszaki megvalósítást is támogassa. Néhány fontosabb szempont: • ne tartalmazzon egyenáramú összetevőt a vonali jel, • a szinkronizálás ne igényeljen külön csatornát, • kétvezetékes rendszerben a vezetékek felcserélése legyen automatikusan felismerhető, és javítható, • a teljesítményspektrum maximuma minél kisebb frekvenciára essen. (Alacsonyabb meghajtó teljesítmény, igénytelenebb vonalak). A sokféle megvalósítás közül kettőt mutatunk be. 62 Az ETHERNET hálózatokban a PE (Phase Encoding) vagy más néven, Manchester kódolást használják. 0-1 átmenet logikai 0-nak, az 1-0 átmenet logikai 1-nak felel meg. Az ábrán szereplő ±0.85V az Ethernet hálózatokban szokásos érték Bitsorozat 1 0 0 0 1 0 1 1

Bináris kódolás 0 +0.85V PE kódolású jel -0.85V 2.26 ábra PE kódolás A PE kód legnagyobb hibája, hogy a bitfolyam sebességének kétszeresénél van az alapfrekvenciája, így nagy sávszélességet igényel. Az áramkör fordított bekötése a 0-ák és 1-ek felcserélését okozza, ami könnyen felismerhető a szinkron sorozatból, és automatikusan javítható. Az ISDN hálózatokban használt kódolás a British Telecom által kidolgozott a 2B1Q módszer. Egy feszültségszint 2 bitet kódol Érték Quat 1 0 + 3 Volt 1 1 + 1 Volt 0 1 - 1 Volt 0 0 - 3 Volt A kódolás nem garantálja az egyenáramú komponens hiányát, ezt keretformátumban kell majd beállítanunk. A legfőbb előnye, hogy a teljesítményspektrumban az energia 90%-a az 5-25kHz tartományba esik a beszédátvitelre használt csatornákon, miközben a vonali sebesség 192 kbit/sec ( beszéd digitalizálásánál az egymást követő bitminták általában nem térnek el jelentősen, az

alacsonyabb frekvenciájú komponensek vannak túlsúlyban. 63 2.4 Digitális átvitel 2.41 Áttekintés A digitális jelátvitel legfőbb előnyei: • a jelek regenerálhatók, • nem kell megkülönböztetnünk a források jellegét. Hang, kép, stb digitalizálása után egységes módon kezelhető az eleve digitális forrásokkal. Hagyományos okokból (szöveg átvitel volt jellemző a kezdeti rendszerekben) a karakterorientált átvitel a legrégebbi. Egy karakter átvitelét általában egy 8 bites csoport, egy oktet valósítja meg. A karakterek átvitele lehet szinkron vagy aszinkron (Start-Stop). Az aszinkron átvitelt egy start – bit kezdeményezi Ezt követi az információs bit-csoport, majd 1, 1.5, 2 stop bit zárja a karakter átvitelét Vezérlésre a karakterek egy része van fenntartva. Egy egyszerű konvenció bevezetésével a vezérlőjelek is elküldhetők a szöveg részeként is. A karaktert ilyenkor duplázzuk Vevőoldalon az egyedül álló

vezérlő karaktert vezérlőnek tekintjük, a duplázottból egyet eldobunk, egyet beillesztünk a szövegbe. Szinkron átvitelnél egy speciális bitcsoport jelzi a kezdetet. A szinkronizáló sorozatot meghatározott számú karakter követi. A módszer ott alkalmazható jól, ahol mindig azonos számú karaktert küldünk. (Pl a terminál egy sorát, 40 vagy 80 karaktert) szinkron 01111110 szinkron n darab karakter 01111110 2.27 ábra Karakterek szinkron átvitele A szinkronizáló bitsorozat jól meghatározhatja egy tetszőleges bitsorozat kezdetét is. A tetszőleges bitsorozatokat továbbító eljárások a bitorientált eljárások. A bitsorozatok hossza erősen változó lehet, nem gazdaságos az állandó hossz. Változó hossz esetén szükség van egy egy vezérlőinformációs mezőre, és a bitsorozat végét is célszerű jelezni. szinkron szinkron Vezérlő információ adat elenőrző inf. végjelzés 64 2.28 ábra 2.42 Karakterek ábrázolása A

számítógépek közötti adatforgalomban az információt kódolva továbbítjuk. Az információt az hordozza, hogy a bitcsoportoknak meghatározott jelentést tulajdonítunk. Az egyes bitcsoportokhoz meghatározott jelentést rendelünk (kódolunk), a vevőoldalon ezt értelmezzük (dekódoljuk). A bitcsoport jelenthet pl. hang-amplitúdót, sötétség értéket egy képen, vagy egy nyomtatható betűt is. Karakter alatt általában egy írásjelet, vagy az íráskép meghatározására alkalmas bitcsoportot értünk. A karakterek ábrázolására az egyik legelterjedtebb eljárás az ASCII kódolás (American Standard Code for Information Interchange). A kódrendszert 1977-ben az amerikai szabványügyi hivatal is elfogadta, majd a nemzetközi szabványügyi hivatal ISO 646 néven regisztrálta. A karaktereket 7 biten ábrázolja, ami az angol ABC számára bőven elegendő, hiszen az angolban mindössze 26 betű van. A számítógépeken szokásos oktet nyolcadik bitje

paritásként használható, A karaktereket két fő csoportba lehet sorolni: • grafikus karakterek (nyomtatható karakterek) • vezérlő karakterek A vezérlő karakterek • információcsere vezérlők (Start of Text, Start of Heading, End of Text, End of Tansmisssion, stb). • Formátum –vezérlő karakterek A szöveg megjelenését befolyásolják. Soremelés (Line Feed), kocsi vissza (Carrige Return), stb. • Információ elkülönítő karakterek a logikai egységek szétválasztására használhatók. Ilyenek a „File Separator”,” Record Separator”, stb A vezérlők egy része nem sorolható egyik csoportba sem, mint a csengő (Bell). Az asztali számítógépek elterjedésével szükségessé vált a nemzeti karakterkészletek megvalósítása. Az IBM vezette be a 256 karaktert tartalmazó „Latin 1” néven ismert 65 kódrendszert. Ez tartalmazza a spanyol, francia és a német nyelv speciális karaktereit. További nyelvek bevezetése ezen a

kódlapon nem lehetséges, ezért különböző nemzeti kódlapokat dolgoztak ki. A 0 – 127 értékű karakterek megfelelnek az ASCII kódolásnak, a fennmaradó részt a nemzeti karakterek és grafikus jelek töltik ki. A magyar a 852-e kódlap A nemzeti kódlapok használata azonban azzal jár, hogy a szövegek írásához, olvasásához mindig a megfelelő kódlapnak kell betöltve lenni. Vegyes nyelvű szövegek esetén ez nehézségekhez vezet. A vezérlőkarakterek alkalmazása is hordoz problémákat, hiszen megváltoztatja a mögöttes karakterek jelentését. A vezérlőkarakter elvesztése a mögöttes szövegben sorozatos hibát okoz. 1987-ben a Xerox kidolgozta az UNICODE elnevezésű rendszerét. Itt minden karaktert 16 biten ábrázolunk. Az Unicode alapelvei: • Teljesség. Minden ismert nyel karakterkészletét tartalmazza Szerepelnek benne a „holt-nyelvek” (pl. szanszkrít) karakterei is • Egyértelműség. Minden kód egyedi Az értelmezés nem függ

semmilyen előzetes jeltől, karaktertől, táblázattól. Egy jel hibás olvasása nem terjed tovább a mögöttes karakterekre. • Pontosság. Minden karakter nyelvi szakértők által elfogadott és ismert írásjel • Hatékonyság. A vezérlőkarakterek hiány egyszerűsíti a feldolgozást A kódrendszer lehetséges helyeinek felosztása: • 8192 alfabetikus karakterhely (nincs kitöltve) • 4096 írásjel hely (nincs kitöltve) • 13 000 kínai írásjel, a „Han” készlet • 5362 felhasználó által definiálható jel • 495 konvertálást elősegítő jel. A nagyobb helyfoglalásért kárpótol a vegyes szövegek kényelmes kezelése és egyértelműsége. A kódkészletet az OFFICE97 és a Novell is ismeri. Várható, hogy a vegyes nyelvű alkalmazások miatt terjedni fog. 2.43 Aszinkron soros átvitel 66 A számítógép terminál és modem közötti kapcsolat megvalósítása a gyakorisága miatt megkülönböztetett figyelmet érdemel.

Ez egy duplex, pont-pont összekötetés A szabványt az Elektronic Industries Association (gyártókat tömörítő szakmai szervezet) dolgozta ki, jele EIA RS-232C ( a „C” betű a harmadik kiadásra utal). Ezt vette át a CCITT V.24 ajánlása A két változat néhány ritkán használt áramkörben eltér, de a gyakorlatban kompatibilisek. (Eltérő pl modem teszt, csengető jelek választása, adatok másodlagos csatornán való visszaküldése). Fogalmak: Adat - végberendezés – Data Terminal Equipment (DTE) (számítógép, terminál) adatáramkör - végberendezés – Data Circuit – Terminoting Equipment (DCE). (Modem) A DTE és a DCE közötti kommunikáció zajlik V.24 szerint Szűkített specifikáció valósítható meg 9 pólusú csatlakozón. A csatlakozó 25 pólusú, „D” típusú . A DTE egységen dugó, a DCE-n hüvely van A logikai „1” (-3V) – (-25V) „0” (+3V) – (+25V) A (-3) – (+3) közötti tartomány tiltott zóna, és alkalmas arra,

hogy a berendezés felismerje, hogy a másik oldal nem létezik vagy ki van kapcsolva. A v.24 szerinti kommunikációt nagyon sok mérőberendezés is használja, és a lehetséges funkcióknak csak kis része van megvalósítva. A szokásos funkciók, és zárójelben a hozzá tartozó csatlakozópont (láb) száma. • Adatterminál kész (Data Terminal Ready = 1) (20) Be van kapcsolva a terminál. • Modem kész (Data Set Reody = 1) (6) • A modem vivőjelet érzékel a vonalon. (Carrier Detect = 1) (8) • Adáskérés (Request to Send) (4) A modem jelzi, hogy tudja fogadni az adatokat a terminálról. • Adás (Transmit) (2) • Vétel (Receive) (3) A modem kábelben minden csatlakozópont az ellenoldal azonos számú pontjához kapcsolódik. (Adás-vétel nincs keresztbe kötve) 67 Az eljárásinterfész pontosan leírja az események érvényes sorrendjét. Két számítógép közvetlenül összeköthető kábellel, a MODEM vezérlőjelek és adatvonalak

használatával ( null-modem). : irány ki be ki be be be ki be láb védőföld 1 TxD 2 RxD 3 RTS 4 CTS 5 DSR 6 dig.nulla 7 DCD 8 DTR 20 Ring Ind. 22 25p. 1 2 3 4 5 6 7 8 20 22 9p. irány ki be ki be be be ki be láb védőföld 1 TxD 2 RxD 3 RTS 4 CTS 5 DSR 6 dig.nulla 7 DCD 8 DTR 20 Ring Ind. 22 25p. 1 2 3 4 5 6 7 8 20 22 9p. PC 3 2 7 8 6 5 1 4 9 PC-PC kapcsolat hardver vezérléssel. 3 2 7 8 6 5 1 4 9 Periféria 2.29ábra Direkt kábeles kapcsolat soros vonalon A kábel hossza erősen korlátozott. 9600 bit/sec esetén maximum 15 méter lehet 68 2.44 ISDN -Integrált szolgáltatású digitális hálózat Az ISDN (Integrated Services Digital Network) célja az volt, hogy a vezetékrendszerekbe fektetett beruházások megőrzése mellett hozzáigazítsa a szolgáltatásokat a digitális rendszerek igényeihez. A hagyományos telefon-rendszert nem digitális információk átvitelére tervezték. Az adat, kép, hang egyidejű és jó minőségű átvitelére nem

alkalmasak. A központok közötti forgalom korábban is részben digitalizált formában zajlott, logikus volt tehát a digitális átvitel kiterjesztése a végpontokig. A kezdeteket az AT&T 1976-ban üzembe helyezett csomagkapcsolt, CCIS hálózata jelentette. Ez a hálózat szigetként működött, nem volt összekapcsolva a többi telefon hálózattal. A jelenlegi hálózat beszédátvitelnél korlátozás nélkül használható analóg hálózathoz tartozó előfizetők elérésére és viszont. A digitális alkalmazásoknál vannak korlátozások, de itt is megteremthető a kompatibilitás. Az ISDN szolgáltatásainak jó része megvalósítható analóg hálózaton is (pl.:hívószám kijelzés). Felépítéséből adódóan vannak azonban új lehetőségek is A digitális kapcsolóközpontok előnye a gyorsabb hívási út felépítés, maximum 0,8 sec a korábbi 30 sec-el szemben. Ez lehetővé tesz olyan interaktív alkalmazásokat, melyek korábban

megvalósíthatatlanok voltak. Nem kell fenntartani folyamatos kapcsolatot , ha időnként akarunk pl.:egy adatállományt szinkronizálni A felhasználó számára az adatút felépítési idő nem érzékelhető késleltetés. Az egyik legfontosabb előnye az ISDN hálózatnak, hogy lehetővé teszi a közvetlen beválasztást. Egy előfizetői érpáron több telefonszám is élhet, melyek közvetlenül hívhatók. A független jelzés csatorna (lásd ISDN interface) lehetővé teszi, hogy a beszéd megszakítása nélkül küldjünk jelzéseket a központba (tűz, betörés, stb.) A „Csoport – 4” üzemmódú fax egy oldalt kb. 5 másodperc alatt továbbít, a korábbi 30 – 35 másodperc helyett. Vannak akik megkérdőjelezik az ISDN létjogosultságát a már létező, számottevően nagyobb sebességű (ADSL) technológiák mellett. Erős versenytársnak mutatkoznak a kábeltelevíziós rendszereken működő nagysebességű adatátviteli csatornák. Az információs

rendszerekben egyre kevésbé válik el a hang , kép és az adatátviteli szolgáltatás. Jelenleg az ISDN jelentősen a versenytársként megjelenő technológiáknál. 69 Az ISDN Európában jelentős szerephez jutott, míg az USA-ban mérsékelt sikert aratott. . Az ISDN rendszerarchitektúrája Az ISDN alapkoncepciója az u.n bitcső (digital bit pipe) A cső egyik végén betöltjük a biteket, a másik oldalon változatlan sorrendben kifolynak . Két alapvető szabványt fejlesztettek ki. Az egyik a kisebb felhasználók igényeihez igazodik, a másik nagyobb szervezeteket szolgál ki. A szolgáltató a helyszínen elhelyez egy NT1 nevű egységet (Network Termination 1). Ez egy kis MODEM méretű eszköz, melynek másik oldala a „T” jelű referenciaponton keresztül csatlakozik a digitális végberendezésekhez. ügyfél irodája szolgáltató T U ISDN telefon jelző készülék számítógép ISDN központ NT1 ügyfél berendezései szolgáltató

berendezései 2.30 ábra Egyéni használó ISDN csatlakozása ügyfél irodája szolgáltató S U T ISDN telefon NT1 jelző számítógép készülék TE1 NT2 ISDN PBX TE1 ISDN központ szolgáltató berendezései S R TA Modem S analóg fax router LAN ügyfél berendezései 2. 31 ábra Nagy forgalmú ügyfél csatlakozása az ISDN hálózathoz 70 Nagyobb szervezetek részére a 2.31 ábrán látható elrendezés a megfelelő A különbség döntően az NT2 jelű (Network Termination 2) digitális alközpont. Ez a PBX (Privat Branch eXchange) nyújtja az interfészt a felhasználói berendezések számára. Referencia pontok : • U hálózati -használó (UNI-User Network) Interface. A felhasználó és a központ közötti szakasz. Alapsebességű összeköttetésnél 1 érpár, primer sebességű összeköttetéskor 2 érpár . • S/T az ISDN hálózat határa. Ezeken a pontokon nyújtott szolgáltatás : négyhuzalos, full-duplex 192 kbit/sec sebességű

digitális BUSZ, ütközés kezeléssel. Az esetleges ütközés érzékelése után egy készülék szerzi meg a vezérlést. Egy -egy csatornát egy készülék birtokol, csak a kapcsolat lezárása után foglalhatja le más készülék. ( Egyszerre pl két telefonkészülék lehet aktív a két B csatornán.) Az ISDN szabványú digitális készülékek illesztésére használható. • NT1 1-es hálózati végződés( Network Termination 1) • TE1 ISDN típusú végberendezés • TE2 nem ISDN típusú berendezés. ( Terminal Equipment type 2) • TA ( Terminal Equipment type 1). végberendezés illesztő (Terminal Adaptor) jelű egység az analóg eszközök számára biztosít az interfészt. • R referenciapont úgy használható, mint az analóg telefon egy végpontja. Kapcsolhatunk rá analóg telefont, vagy analóg modemet is. Az „U” referenciapont valójában a felhasználó az ISDN központ közötti kábelszakasz. Használható a hagyományos, meglévő

előfizetői hurok , ha a csillapítása kisebb mint 36 dB , 40 kHz-en mérve. Meg kell vizsgálni továbbá az érpárok közötti áthallásokat, földhöz viszonyított asszimetriát, csoportfutási időt (40kHz-en max 80µsec) . A vonali átvitelre alapsebességű rendszernél kéthuzalos , viszhangtörléses eljárást, primer sebességű csatlakozásnál 4 huzalos csatlakozást használnak általában ( Japánban és Franciaországban eltérő). A kódolás 2B1Q ( lásd 2.34 szakasz ) 71 adó viszhangtörlő kéthuzalos érpár hibrid vevő + 2.33 ábra Viszhangtörléses adó-vevő egyszerűsített szerkezete A bitcsövön több csatorna osztozik. A szabványosított csatorna típusok: A 4 kHz-es analóg telefoncsatorna B 64 kbit/sec sebességű csatorna hang és adatátvitelre (Európa) 56 kbit/sec sebességű csatorna hang és adatátvitelre (USA, Japán) C 8 vagy 16 kbit/sec sebességű digitális csatorna D 16 vagy 64 kbit/sec sebességű digitális csatorna

sávon kívüli jelzési feladatokra E 64 kbit/sec sebességű digitális csatorna sávon belüli jelzésre H 384 kbit/sec, 1536 kbit/sec, 1920 kbit/sec digitális csatorna. A „D” csatorna a gyakorlatban túl szélesnek bizonyult a jelzések számára. A csatornában lehetővé teszi a szabvány egy „p” jelű 9,6 kbit/sec sebességű szinkron csatorna (X.21), egy „t” jelű 75 bit/sec sebességű telemetria csatorna létrehozását a jelzési alcsatornán (s) kívül. A kissebességű csatorna tűz, betörés, füst, stb. jelzésére használatos Előnye, hogy bármilyen üzemállapotban szabad, nem kell az adatátviteli csatorna forgalmát megszakítani. A „B” csatornák tisztán a felhasználói adatforgalom rendelkezésére állnak. A csatornák nem ötvözhetők tetszőlegesen. A szabvány 3 kombinációt fogadott el: • Hibrid 1A + 1C (Európában nem használatos) • Alapsebesség 2B + 1D • Primer sebesség 23B + 1D (USA, Japán) 30B + 1D (Európa) 72

A primer sebességek a telefonhálózatban használt magasabb szintű kapcsolathoz illeszkednek. A 23B+1D elrendezés az AT&T T1 csatornájához, a 30B + 1D a CCITT 2,048 Mbit/sec sebességű E1 csatornájához igazodik. Az alapsebességű kapcsolat a központ és az NT1 között 1 érpárat, a primer sebességű kapcsolat 2 érpárat igényel. Alap sebesség esetén az előfizetői szakasz teljesítménye kétszeresére, primer sebesség esetén 15 –szörösére nő! Az ISDN eltérő szabványai komoly nehézséget okoznak a kontinensek közötti forgalomban. Eltérések vannak a T és S referenciapontokon az időrések értelmezésében is. Teljesen biztosak akkor lehetünk a kompatibilitásban, ha a készülékek azonos gyártótól származnak, vagy a kompatibilitás ellenőrzött. A PC-s programok egy része tartalmazza a csatolókártyák vezérlését különböző PBX-hez, ezzel biztosítva a kompatibilitást. Az ISDN alapvetően 64 kbit/sec sebességű csatornákból

építkezik, ezért N-ISDN-nek (Narrow band ISDN) is nevezik, megkülönböztetésül a szélessávú ISDN-nek is nevezett ATM rendszertől. A 64 bit/sec azt jelenti, hogy 8000 db 8 bites mintát tudunk továbbítani a hálózaton. Ez megfelel a hangátvitel általános igényeinek. A 3,3 kHz körüli maximális frekvencia átviteléhez legalább kétszeres mintavételi sebesség (6,6 kHz) szükséges. A szűrők által igényelt többlet miatt a 8 kHz-es mintavétel elfogadható (Amerikában 7 kHz). A kvantálás 8 biten történik, így adódik a 64 kbit/sec ( 56kbit/sec USA, Japán) sebesség a beszédátvitel számára. ISDN felhasználói interfész A felhasználó számára a legfontosabb a T és S referenciapont. Erre csatlakozik az u.n S∅ BUSZ A BUSZ 4 érpárat tartalmaz, 100 ohm-os hullámimpedanciával 2 érpár szolgál adatátvitelre, 2 érpár tápfeszültséget szállít. Az adatátvitelre szolgáló érpárokat a végpontokon 100 ohmos ellenállással le kell zárni

(TR) . Az NT1-nek legalább 1 készülék tápellátását kell biztosítani a központ felöl. Ez teszi lehetővé, hogy helyi áramszünet esetén legalább egy készülék használható maradjon. A kábel hossza legfeljebb 1 km lehet, és maximum 8 eszköz csatlakozhat rá. 73 Az eszközök elrendezését a jelek futási ideje befolyásolja. Az adást a készülékek az NT irányból érkező keretekhez szinkronizálják. Az NT egy maszkhoz viszonyítja a beérkezett bitek időbeli helyzetét, és a maszkon kívüli jeleket eldobja. 1000m kábel akkora késleltetést jelent, hogy egy közeli és egy távoli berendezéshez tartozó futási idő nem marad az időkorlátokon belül. ( 1bit≈ 5µsec, 1000m kábel késleltetése is körülbelül 5µsec ) 100-200m TR TE1 TR NT TR NT TE n (a ) Passzív busz Maximum 8 állomás max. 1000m 30-50m TR TE1 TEn (b) Kiterjesztett busz M axim um m 4 állom ás, koncentrált elhelyezésben. 2.32 ábra ISDN készülékek

elrendezése a buszon Az NT közvetlenül, vagy legfeljebb 3m-es vezetékkel csatlakozhat a busz-hoz. 74 A végberendezések általában 3m-es, de legfeljebb 10m-es vezetékkel kapcsolódnak a busz-ra. Ez okoz némi illesztetlenséget, de a telefonok , vagy más készülékek könnyű mozgathatósága a nyereség. S0 busz kódolása. bináris adat: jel polaritás: 1 0 0 + 0 - 1 0 1 0 0 + 1 0 jelalak: 2.34 ábra Bináris jelek kódolása az S/T interfészen A kódolás NRZ jellegű, módosított AMI kód. Érdekessége, hogy a logikai "1"-nek "0" volt felel meg. A logikai "0"-t váltakozó polaritású impulzus jelzi Az egyenáramú középérték akkor nulla, ha a bináris kódban a nullák száma páros. A kereten belül ez egyetlen bit, a kiegyensúlyozó bit hozzáadásával beállítható, tehát az egyenáram mentesség könnyen biztosítható. ISDN keretek. F - keretszinkronbit L - egyenáramú kiegyenlítő bit D - D csatorna 1

bitje FA - keretszinkron segédbit B1 és B2 - B1és B2 csatorna bitjei A - aktivitás bit S- szogálati bit (használaton kívül bináris "0") E- echo bit M- multikeret szinkronbit ( Csak USA) 2.34ábra Keret szerkezete az S/T interfészen 75 Az "S" busz átviteli képessége 192 kbit/sec . A keret szerkezete 234 ábrán látható A keret szerkezete kissé eltér az NTTE és a TENT irányú kommunikációban. Mindkét irányban azonos B1 és B2 csatornák adatátvitele. A "B" csatornák minden 8 bitjéhez a "D" csatorna 1 bitje kerül átvitelre, egy keretben tehát 2 bit. Így adódik ki a 16kbit/s+64kbit/s+64kbit /s sebesség. Az adatátvitel szinkron Az állomások (TE) a vételi oldalon nyert órajelhez szinkronizálják az adást, két szimbólumnyi eltolással. A bitszinkronizációt a végberendezések megfelelő telepítésével (2.33 ábra) oldják meg. Azt , hogy melyik állomás adhat, a "D" csatorna hozzáférési

eljárása szabályozza. Látható, hogy a az NTTE irányban az NT "E" bitként visszafordítja az utoljára vett "D" biteket. Ha egy állomás már ad, akkor várhatóan lesznek "0" bitjei, amit érzékelhetünk. Egy másik állomás akkor kezdhet adásba, ha legalább 8db bináris "1"-et vett az "E" biten. Az állomás összehasonlítja a saját utoljára adott "D" bitjét a visszakapott "E" bittel, és ha eltérést tapasztal azonnal felfüggeszti az adást. Ez az eljárás biztosítja, hogy ha egyszerre kezdett adásba két állomás akkor mindkettő visszalépjen. A két állomás közül a magasabb prioritású fogja megszerezni a buszt. 76 2.45 Asynchronous Transfer Mode (ATM) hálózatok A fejlesztés célja: megfelelő módszert találni a protokollok és a feladatok összhangjára. A különböző forrásokból származó információk közös (hang, videó, adat) továbbítása egy nagysebességű

hálózaton, ahol a különböző feladatok eltérő elvárásokat jelentenek a hálózat számára. A szolgáltatások jellemzésére 3 tulajdonságot jelöltek meg a tervezés során: • Valós idejű szolgálat, nem valós idejű szolgálat • Állandó bitsebességű szolgálat, nem állandó bitsebességű szolgálat • Összeköttetés alapú vagy összeköttetés nélküli szolgálat Pl.: a hangátvitel állandó sebességű kapcsolatot (Constant Bit Rate, CBR) igényel. Egy interaktív lekérdezés, vagy tömörített vido átvitele változó sebességgel szolgálható ki megfelelően (Variable Bit Rate). A kívánt tulajdonságokat hordozza az ATM. Az ATM hálózatokat nevezik még B-ISDN-nek , vagy nagysebességű ISDN-nek is. A megvalósítás valójában csak annyiban hasonlít az ISDN-re, hogy vonalkapcsolt rendszer, és ez is egy bit-csövet szolgáltat, amin az adaptációs réteg azt továbbít és ellenőriz, amit akar. Az adaptációs réteg szerepe hasonló

az OSI szállítási rétegéhez, de nem feleltethetők meg a feladatok teljes mértékben. A műszaki megvalósítás: • Az adatfolyamot kis méretű "cellákban" (53 byte) továbbítjuk • A cellák továbbítása asynchronous, statisztikus multiplexeléssel • A cellákat "kapcsolók" irányítják a megfelelő útvonalakon. Az ATM alapvetően összeköttetés orientált rendszer. Az adattovábbítás előtt létre kell hozni az összeköttetést, és az összeköttetés az adatátvitel ideje alatt állandó marad ( a cellák állandó útvonalon haladnak, ha nem történik valami rendkívüli esemény). A protokoll nem tartalmaz nyugtázást, mert elsősorban nagytávolságú, megbízható, üvegszálas hálózatokhoz tervezték. 77 UNI - User Network Interface NNI - Network Network Interface 2.35 ábra ATM hálózat vázlatos felépítése A cellák megérkezését a célállomásra semmi sem garantálja, de a sorrendjük nem változik meg ( egy

fizikai vezetéket szimulálunk) . A továbbítás módjára és közegére nincs előírás. A cellatovábbítást azért nevezzük asynchronous-nak, mert a vonalon a különböző forrásból származó celláknak nincs fix időrése, az átviteli közegre stisztikus multiplexeléssel kerülnek. Az aktív állomásoknak sem kötelező mindig cellát generáni. A kialakított virtuális áramkör továbbra is él A rendszerben szigorúan elkülönülnek a jelzési és a felhasználói feladatok. A rendszer valójában meglehetősen bonyolult. A tervezett adaptációknak jelenleg csak egy része van készen, az adaptációs réteg fejlesztése most is folyik. Az ATM vonalkapcsolt szolgáltatást nyújt csomagkapcsolásos módszerekkel. A kialakított útvonalak "virtuálisak", hiszen nincsenek fizikailag "összedrótozva". Az ATM kapcsolat mindig két kapcsoló, vagy egy végberendezés és egy kapcsoló között jön létre. A csatorna egyirányú Ha kétirányú

összeköttetésre van szükség, akkor az ellenirányú útvonalat is létre kell hozni. A vonalkapcsolt rendszerekhez képest a kapcsolat felépítési idő rendkívül rövid. A kapcsolat lehet állandó: Permanent Virtual Circuit A kapcsolatot kézzel állítjuk be, és hosszú ideig állandó ( hetek, hónapok ). ( A switch táblázatában fixen bent vannak az állomások adatai Switched Virtual Circuit ( Igény szerint jön létre, a címek alapján ) 78 A virtuális összeköttetések tulajdonságai • Egy virtuális kapcsolat ( Virtual Connection ) mindig két végberendezés között jön létre. Ezek a csatornák A csatornákat Virtual Channel Identifier azonosítja. Egy csatornán egy hoszt több viszonya is átvihető egyidőben • A virtuális csatornákat virtuális útvonalakba tudjuk rendezni. Az útvonalakat a Virtual Path Identifier azonosítja). 2.36 ábra ATM hálózat két kapcsoló között ATM rétegmodell Alkalmazások Alkalmazások 2.37 ábra

ATM vázlatos rétegfelépítése A rétegek feladatai: • A fizikai réteg feladata a cellák átvitele a fizikai közegen ( Media ) • Az ATM réteg feladata a cellák továbbítása a forrás és a célállomás között. (ATM - Layer ) • Az adaptációs réteg ( ATM Adaptation Layer, AAL ) feladata az ATM illesztése a magasabb rétegekhez, az alkalmazásokhoz . Az adaptációs réteg további 2 alrétegre botható 79 A konvergencia alréteg (convergence sublayer) tartalmaz egy alkalmazás specifikus részt, és egy állandó részt, ami az üzeneteket 44-48 bájtos darabokra szedi szét, illetve a cellákból az eredeti üzenetek összeállításáért felelős. Az AAL alsó rétege, a (Segmentation And Reassembly) SAR további fej és farokrészeket adhat a darabokhoz, majd önálló cellaként adja át az ATM rétegnek. A célállomáson a SAR alakítja vissza a cellákat üzenetekké. A SAR nyalábolási feladatokat is elláthat. A tényleges ATM modell jóval

bonyolultabb, mert nem csak rétegeket, hanem „síkokat” is tartalmaz, teljesen szétválasztva a felhasználói és az adminisztrációs feladatokat. Az ATM adaptációs réteg határozza meg az alkalmazásoknak nyújtott szolgáltatások minőségét és típusát. Minőségi osztályok: • Class A: fizikai áramkör emuláció, állandó bitsebességgel ( videó, beszéd ) • Class B: változó bitsebességű audió és videó • Class C: kapcsolatorientált adatforgalom • Class D: kapcsolat nélküli adatcsere Adaptációs réteg tervezett változatai: • AAL 1 : kapcsolatorientált, szinkron adatátvitel állandó bitsebességgel • AAL 2 : kapcsolatorientált, szinkron adatátvitel változó bitsebességgel • AAL 3/4 : kapcsolatmentes, aszinkron adatforgalom változó bitsebességgel • AAL 5 : egyszerűsített, kapcsolatmentes, aszinkron adatátvitel változó bitsebességgel. Az AAL1 elsősorban olyan alkalmazásokhoz készült, ahol a bemenet egy

határolók nélküli bitfolyam, de alkalmas az üzenethatárok jelzésére. A konvergencia alréteg detektálja az elveszett, vagy hibás cellákat, de az alkalmazásra bízza, hogy mit tegyen. Az AAL1 cella 48 byte hosszú. Kétféle alaptípusa van, attól függően, hogy az üzenethatárok a cellába esnek, vagy sem, van-e egyáltalán üzenethatár amit meg 80 kell őrizni. (Pl: egy folyamatos, hangdigitalizálásból adódó bitfolyamon nincsenek üzenethatárok.) P cella bitek 7 6 5 4 3 2 1 0 SN 0 SNP P nem-P cella 7 6 5 4 3 2 1 0 1 SN SNP P 47 byte adatmező Pointer 47 byte adatmező 2.38 ábra AAL1 cella felépítése A P típusú cella megőrzi az üzenethatárokat, a nem P típusú cella nem tartalmaz információt az üzenethatárokról. A cella 1 bájtos fejrésszel kezdődik. Az első bit alapján eldönthető, hogy P vagy nem P típusú a cella. SN (3 bit) - sorszám, a hiányzó cellák detektálására. SNP (3 bit) - cellasorszám védelem. X3 + x + 1

polinómmal képzett CRC 1 bit hibát tud biztosan javítani. P – paritásbit, páros paritás. P cellánál a pointer mező adja meg a következő üzenet kezdetének eltolását. P cella csak páros sorszámú cella lehet, tehát a pointernek 2 cella adatmezőjét kell tudni megcímezni. Értéke 0 - 92 lehet ( 46 + 47 = 93 pozíció ). Láthatjuk, hogy az üzenethatároknak és a cellahatároknak nem kell egybeesni, és tetszőleges hosszúságú üzenetet tudunk létrehozni. A pointermező legmagasabb helyi értékű bitje fenntartott később meghatározandó célokra, a címzésre 7 bitet használunk. Az AAL2 és az AAL3/4 még nem tekinthető kidolgozottnak. A számítógépes alkalmazások szempontjából az AAL5 cella fontos, mivel itt vették figyelembe a számítógép hálózatok igényeit. A többi elsősorban a távközlési igényekhez alkalmazkodik. Az AAL5 adatmezőjében lehetséges IP csomagok továbbítása is 81 Az AAL5 üzenet szerkezete: Bájtok száma 1

Data (1 -65535 Byte) 1 UU 2 4 Length CRC jelenleg nem használt n*48 byte UU = Use to User. A felsőbb rétegek használják, az AAL nem Length = üzenet hossza a kiegészítések nélkül Az adatmezőt kiegészítjük, hogy a teljes hossz 48 byte többszöröse legyen. 2.39 ábra AAL5 üzenet szerkezete A konvergencia alréteg nem fejrészt, hanem farokrészt ad az adatmezőhöz. A User to User mezőt nem használja, fenntartja az alkalmazások számára. 1 bájt még ne definiált funkciókra van fenntartva. A hosszmező (Length) a kiegészítések nélküli adatmező hosszát adja meg. A CRC a szokásos (x8 +x2+x+1.polinommal képzett) 32 - bites ellenőrzőösszeg, beleszámítva a kiegészítéseket is. Az üzenetet a SAR alréteg 48 bájtos darabokra tördeli, és átadja az ATM rétegnek. Az utolsó cella átadásakor utasítja az ATM réteget, hogy a PTI mezőben az első bitet állítsa 0-ra az üzenethatár jelölésére. (A módszer a rétegtervezési elvek durva,

és indokolatlan megsértése, ami az ATM rendszerben több helyen is előfordul.) ATM cella felépítése A SAR alrétegből kapott 48 oktet az ATM rétegben az ATM cella adatmezőjébe kerül, és kiegészül egy fejrésszel. Alapvetően kétféle cellaformátum van. • kapcsoló és végpont közötti forgalomra (User - Network Interface közti forgalomhoz) • kapcsolók közötti forgalomra ( Network -Network Interface közti fogalomhoz) 82 A különbség csak az első oktet első 4 bitjén van. Az UNI interfésznél ezt a 4 bitet a forgalom vezérlésére használják, az NNI esetén ezt is az útvonal azonosítására használják. 7 6 5 GFC VPI(low) 4 3 2 1 0 VPI(high) VCI(high) VCI VCI(low) bitek 7 6 4 3 2 1 0 VPI(high) VPI(low) VCI(high) VCI VCI(low) PTI P HEC 5 oktets PTI P HEC 48 oktets Payload 48 oktets Payload 53 oktets Cella felépítés UNI esetén GFC = Generic Flow Conntrol VPI = Virtual Path Identifier VCI = Virtual Circuit Identifier 5

Cella felépítése NNI esetén PTI = Payload Type Identifier P = Cell Loss Priority bit HEC = Header Error Control (CRC) 2.40 ábra ATM cella felépítése GFC: általános forgalomszabályozás Az első kapcsoló felülírja. VPI : a virtuális útvonalat azonosítja VCI: a virtuális áramkört választja ki a virtuális útvonalon belül Néhány VPI és VCI fenntartott a kapcsolat felépítés céljaira. PTI: az adatmező típusát határozza meg. (Felhasználói adatmező, nincs torlódás, van torlódás, karbantartó cella, erőforrás kezelő, stb.) P – Cell Loss Prioriti bitet a hoszt állítja 1-re, vagy 0-ra. Torlódás esetén a kapcsoló először azokat a cellákat dobja el, ahol a CLP=1. A HEC (Header Error Control) az első 4 bájtot fedi le. Képzése: a fejrész 32 bitjének x8 +x2+x+1 polinómmal (moduló 2) osztása után kapott maradékhoz 01010101 konstansot adjuk hozzá. A kapott CRC kijavítja az összes 1 bites hibát és sok több -bites hibát is jelez.

83 A cellák vétele Az ATM cella a szokásoktól eltérően nem tartalmaz szinkronizáló bitsorozatokat, így semmi nem jelöli a cellák határát. A cella határok megtalálását a HEC teszi lehetővé. 2.41 ábra Cellahatárok keresése ATM hálózatban Az alapgondolat az, hogy tetszőleges 40 bitet kiválasztva megvizsgáljuk, hogy az utolsó 8 bit az előző 32 ellenőrző összege-e. Ha nem, 1 bittel léptetünk, és megismételjük az eljárást. Ha egyezést találunk, akkor valószínűleg megtaláltuk a cellahatárt, a rendszer átmegy az ELŐSZINKRON állapotba. Mivel a HEC mindössze 8 bit, így 1/256 annak a valószínűsége, hogy egy tetszőleges bitsorozattal megegyezőt kapjunk. A szinkron nem biztos, hogy bekövetkezett. Akkor tekintjük a rendszert szinkronizáltnak, ha δ darab egyezést találunk egymás után. Ha δ elég nagy, a tévesztés tetszőlegesen alacsony értéken tartható. Ha egy szinkronizáltnak tekinthető állapotban hibás HEC-et kapunk,

akkor lehet, hogy valóban hibás fejrészt vettünk, vagy elvesztettük a szinkront. Ha következő HEC jó, akkor valószínűleg hibás a fejrész. Ha egymás után αdarab hibás HEC-et kapunk, akkor valószínűleg kiestünk a szinkronból és visszatérünk a VADÁSZAT üzemmódba. 84 ATM kapcsolók Az ATM cellák tervezésénél kezdettől fogva figyelembe vették a kapcsolók igényeit. A rövid és fix hosszúságú cellák teszik lehetővé, hogy viszonylag olcsó hardver kapcsolókat alakítsunk ki. A szokásos kapcsolóknak 16-1024 bemenete/kimenete van. A kapcsolónak így 155 Mbit/sec (pontosan: 155,52 Mbit/sec) sebességnél 2,7 µsec-ként kell 16-1024 cellát fogadni. 620 Mbit/sec-nél 0,7 µsec áll rendelkezésre egy cellacsoport fogadására Ez a sebesség elfogadható áron csak akkor realizálható, ha nem kell változó hosszúságú és szerkezetű keretekkel foglalkozni. Az ETHERNET hálózatokban alkalmazott kapcsolók változó hosszúságú kereteket

kezelnek, de a ki/bemenetek száma jellemzően 4-24 között van, és nem ezres nagyságrendű. A kapcsolóktól elvárjuk: • a lehető legkevesebb cellavesztéssel kapcsoljanak (10-12 , vagy ennél jobb. Ez óránként néhány cella elvesztését jelenti.) • soha ne rendezze át egy virtuális áramkörön a cellák sorrendjét A cellavesztési arány csökkentésére a kapcsolók puffereket használnak. Általában a kimeneti pufferelés hatékonyabb, mint a bemenő oldali. A pufferek számának csökkentésére több eljárást dolgoztak ki. Az alapgondolat az, hogy a kimeneti vonalakon az egyidejű torlódás nem valószínű. A puffert mindig oda kell kapcsolni, ahol szükség van rá. A pufferek számának csökkentésével a kapcsolók kereskedelmi ára csökkenthető, a cellavesztési arány növekedése mellett. ATM és a LAN hálózatok Az ATM összeköttetés alapú hálózat. A számítógépes LAN hálózatok jobbára összeköttetés mentes protokollokat

használnak, és ez a különbség sok nehézség forrása. A fő probléma az, hogy számos funkció igényli a "mindenkinek" szóló (Broodcast) üzeneteket, amit az összeköttetés alapú rendszerek nem támogatnak. A megoldásra több javaslat is született, de "igazi" megoldás nincs. Az ATM azonban nagyon jól használható a távoli LAN-ok összekötésére, ahol az ATM a híd szerepét veszi át. Az ATM és az IP hálózat kapcsolatára a TCP/IP hálózatoknál még visszatérünk. 85