Tartalmi kivonat
Dr Turjányi Sándor Kombinatorika és Gráfelmélet 1998. Gráfelméleti alapfogalmak Minden józan ítéletû ember elôtt ismeretes, hogy QpKiQ pY yWD PiU HONH]G{G|WW D] tUiV PDJDU QHOYHQ LV amelyet nekünk Cicero és minden mûveltebb nemzet példája DODSMiQV~ORVRNRNEyOQDSUyOQDSUDPLQGMREEDQpVMREEDQ tôlünk telhetôleg mûvelni és gazdagítani kell. %RUQHPLV]D 3pWHUhGY|]OHWDQiMDVROYDVyQDN 9DQ DNL D JUiIHOPpOHW NH]GHWpW UH GDWiOMD PLNRU LV (XOHU PHJROGRWWD D .|QLJVEHUJLKLGDN SUREOpPiMiW 9DQ DNL .LUFKRII HOHNWURPRV KiOy]DWRNUD YRQDWNR]y EHQ SXEOLNiOW HUHGPpQHLKH] NDSFVROMD D JUiIHOPpOHW NH]GHWpW 0iVRN &DOHQHN HJ EHQ PHJMHOHQW FLNNpW WHNLQWLN D] HOV{ JUiIHOPpOHWL WDQXOPiQQDNPHOHWHJV]HUYHVNpPLDLDONDOPD]iV PRWLYiOW 6 WHUPpV]HWHVHQRODQRNLVYDQQDNDNLN*XWKULHQHN N|UO H 0RUJDQKR]LQWp]HWWNpUGpVpW{OV]iPtWMiNDJUiIHOPpOHWNH]GHWpW
$QHYH]HWHVNpUGpVDQpJV]tQVHMWpVNRUDL PHJIRJDOPD]iVD YROW 0LQGHQHVHWUHWDOiQHOIRJDGKDWyiOOiVSRQWD]KRJ D JUiIHOPpOHW YDODKROYDODPLNRUPHJV]OHWHWWpVD]XWyEELpYEHQHJUHW|EE KHOHQ DONDOPD]]iN RSHUiFLy NXWDWiVEDQ HOHNWURPRV KiOy]DWRN WHUYH]pVpEHQV]iPtWiVWHFQLNiEDQ $ JUiIRNDW QpPLOHJ SRQWDWODQXO ~J LV V]RNWiN MHOOHPH]QL PLQW SRQWRN pV YRQDODN KDOPD]iW (POpNH]YH D JUiIHOPpOHW JHRPHWULDL WRSROyJLDL LQGtWDWiViUD NH]GHWpUH 0L LWW D WiUJDOiV HOHMpQ LJHNV]QN WLV]WiQ D KDOPD]HOPpOHW QHOYpQ GHILQLiOQL D OHJW|EE JUiIHOPpOHWL DODSIRJDOPDW 7HUPpV]HWHVHQ QHP PRQGXQN OH DUUyO D OHKHW{VpJU{O VHP KRJ IHOKDV]QiOMXN D PDWHPDWLND PiV WHUOHWpQ HOpUW HUHGPpQHNHW PRQGDQGyQN MREE PHJYLOiJtWiVDpUGHNpEHQ HILQtFLy /HJHQ DGRWW D] ( pV 9 GLV]MXQNW KDOPD]RN pV OHJHQ DGRWW D] ( KDOPD]QDN D 9[9EH 9 |QPDJiYDO YHWW GLUHNW V]RU]DWiED YDOy ϕ OHNpSH]pVH HNNRU D * (ϕ9 W LUiQ WRWW
JUiIQDNQHYH]]N $] ( KDOPD] HOHPHLW * (ϕ9 JUiI pOHLQHN pV D 9 KDOPD] HOHPHLWDJUiIFV~FVSRQWMDLQDNPRQGMXN+D e ∈ E é s ϕ (e) = (v1 , v2 ) DKRO v1 , v2 ∈V DNNRU H]W ~J PRQGMXN KRJ D] H pO Y FV~FV SRQWEyO NLIXW NLPHJ V D Y FV~FVSRQWED PHJ YEH IXW $ ϕ OHNpSH]pVW D JUiI LOOHV]NHGpVL OHNpSH]pVpQHN PRQGMXN $ WRYiEELDNEDQ YDODPHO $ KDOPD] V]iPRVViJiQDN D MHO|OpVpUH D] A V]LPEyOXPRW KDV]QiOMXN ,WW MHJH]]N PHJ KRJ H WiUJRQ EHOO NLYpWHOHV HVHWHNW{O HOWHNLQWYH PDMGQHP PLQGLJ YpJHV KDOPD]RNNDO IRJODONR]XQN D]D] D KDOPD]DLQN HOHPHLQHN D V]iPD YDODPHO QHP QHJDWtYHJpV]$* (ϕ9 JUiIRWYpJHVQHNPRQGMXNKDD](pVD 9 KDOPD]RN YpJHV KDOPD]RN D]D] E , V < ∞ $ WRYiEELDNEDQ KD FVDN D]HOOHQNH]{MpWQHPPRQGMXNPLQGLJYpJHVJUiIRNUyOEHV]pOQN KD HILQtFLy $ G = ( E , ϕ ,V ) UpV]JUiIMiQDN QHYH]]N D G = ( E , ϕ ,V ) L E ⊆ E ,V ⊆ V pV L (∀e
∈ E ) ⇒ (ϕ (e) = ϕ (e)) IHOWpWHOHNWHOMHVHGQHN $ IHQWL GHILQtFLyW V]HPOpOHWHVHQ ~J LV PHJIRJDOPD]KDWMXN KRJ D * JUiI EiUPHO UpV]JUiIMiW PHJNDSKDWMXN RO PyGRQ KRJ * EL]RQRV pOHLW W|U|OMN pV XJDQFVDN W|U|OKHWMN YDODPHO FV~FVDLW LV $ FV~FVRN W|UOpVpQpO D]RQEDQ JHOQQN NHOO DUUD KRJ D] DGRWW FV~FVUD LOOHV]NHG{ YDODPHQQL pOW LV W|U|OMN Lokális tulajdonságok HILQtFLy $ * (ϕ9 LUiQ WRWW JUiI v ∈V FV~FViQDN NL IRNiQ D v FV~FVEyO NLIXWy pOHN V]iPiW pUWMN pV δ ki (v ) YHO MHO|OMN HILQtFLy $ LUiQ WRWW JUiI v ∈V FV~FViQDN EH IRNiQ D v FV~FVEDEHIXWypOHNV]iPiWpUWMNpV δ be (v ) YHOMHO|OMN ,7pWHO+D* (ϕ9 YpJHVJUiIDNNRU ∑ δ (v ) = ∑ δ (v ) = ki be v ∈V v ∈V E %L]RQ WiV $] pOHN V]iPD V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN +D D * JUiIQDN QLQFV pOH DNNRU D ∑ δ ki (v );∑ δ be (v ); E v ∈V v ∈V
V]iPRNUHQGUHQXOOiYDOHJHQO{HNVtJDWpWHOiOOtWiVDQLOYiQ WHOMHVO 7pWHOH]]N IHO KRJ D WpWHO LJD] EiUPHO RODQ * JUiIUD DPHOQHN D] pOHLQHN D V]iPD Q YDJ NLVHEE PLQW Q ,JD]ROMXN D] iOOtWiVW D]RQ * JUiIRNUD DPHOHNQHN SRQWRVDQ Q pOH YDQ /HJHQ PRVW DGRWW * (ϕ9 pV E = n + 1 WRYiEEi OHJHQ RODQ G = ( E , ϕ ,V ) UpV]JUiIMD *QHN PHOUH E = n pV 9 9 WHOMHVHGLN PiV V]yYDO * W YDODPHO H pOpQHN D W|UOpVpYHO NDSWXN$]LQGXNFLyVIHOWHYpVV]HULQW ∑ δ (v ) = ∑ δ (v) = ki v ∈V be v ∈V E $]RQEDQ D * (ϕ9 YpJHV JUiI ϕ LOOHV]NHGpVL OHNpSH]pVH EiUPHO e ∈ E élhez egyértelmûen hozzárendel egy (v1 , v 2 ) UHQGH]HWW SiUW DKRO v1 D NL IRNRN v2 D EH IRNRN D] H pO SHGLJ D] pOHN V]iPiW Q|YHOL HJHOHJHO 7HKiW KD KH] W DGXQN DNNRU SRQWDEL]RQ WDQGy ∑ δ ki (v ) = ∑ δ be (v ) = E HJHQO{VpJDGyGLN v ∈V v ∈V HILQtFLy +D D] H pO
XJDQDEED D SRQWED PHJ YLVV]D DPHOE{O NLIXWRWW DNNRU KXURNpOQHN PRQGMXN D]D] ϕ (e) = (v1 , v 2 ) é s v1 = v 2 HILQtFLy+DD]HHpOHNUH ϕ (e1 ) = (v1 , v 2 ) pV ϕ (e2 ) = (v1 , v 2 ) DNNRU D]HHpOHNHWV]LJRU~DQSiUKX]DPRVDNQDNPRQGMXN HILQtFLy+DD]HHpOHNUH ϕ (e1 ) = (v1 , v 2 ) pV ϕ (e2 ) = (v 2 , v1 ) DNNRU D]HHpOHNHWSiUKX]DPRVRNQDNPRQGMXN HILQtFLy$9KDOPD]|QPDJiYDOYHWWUHQGH]HWOHQV]RU]DWiQ D]W D KDOPD]W pUWMN PHOQHN D] HOHPHL (vi , v j ) DODN~ UHQGH]HWOHQ SiURN-HOH9UQ9 HILQtFLy/HJHQDGRWWD](pV9KDOPD]pVOHJHQDGRWWD] (KDOPD]QDND9UQ9EH 9|QPDJiYDOYHWWUHQGH]HWOHQV]RU]DWiED YDOyϕOHNpSH]pVHHNNRUD* (ϕ9 WJUiIQDNQHYH]]N +D D * JUiI QHP LUiQ WRWW JUiI DNNRU QLQFV pUWHOPH szigorúan párhuzamos élekrôl beszélni. egyszerûen párhuzamos élt HVHWOHJ W|EEV]|U|V pOW PRQGXQN 1LOYiQ D KXURN pO IRJDOPD LUiQ WRWW pV LUiQ WDWODQ JUiI HVHWpQ XJDQD] +D YDODPHO *
JUiIEDQQLQFVVHPSiUKX]DPRVVHPKXURNpODNNRUD]WD*JUiIRW egyszerû gráfQDN QHYH]]N$ .HGYHV 2OYDVy WDOiONR]KDW RODQ N|QYHNNHO LV DPHOEHQ D]RQ * JUiIRNDW PHOHNEHQ SiUKX]DPRV pOHNLVWDOiOKDWyNPXOWLJUiIRNQDNQHYH]LN+DYDODPHOJUiIQDN HJHWOHQpOHVLQFVV]RNiVD]WUHVJUiIQDNPRQGDQL HILQtFLy $ * JUiI Y FV~FViQDN IRNiQ D YUH LOOHV]NHG{ pOHNV]iPiWpUWMN-HOH δ (v ) ,7pWHO Np]IRJiVL WpWHO DNNRU ∑ δ (v ) = 2 E +D D G ( E , ϕ ,V ) JUiI YpJHV v ∈V 7HNLQWVQN HJ WiUVDViJRW DKRO D] HPEHUHN QHP FVDN V]yED iOOQDNHJPiVVDOGHRONRURONRUPpJNH]HWLVIRJQDNV{WD]W VHP]iUMXNNLKRJHJHVHNW|EEV]|ULVNH]HWIRJWDNYDJYDODNL |QPDJiYDOIRJRWWNH]HW+DPRVWD]HPEHUHNHWWHNLQWMNDJUiIXQN FV~FVSRQWMDLQDN pV HJHJ Np]IRJiVW HJ pOQHN DNNRU D WpWHO SRQWRVDQ D]W iOOtWMD KRJ D Np]IRJiVRN V]iPD EiUPHO WiUVDViJEDQ SiURV )pOUHpUWpVHN HONHUOpVH YpJHWW KD ; NH]HW IRJRWW <DO
DNNRU < LV NH]HW IRJRWW ;HO PiV V]yYDO D Np]IRJiVRN HJHQUDQJ~DN $ WpWHO V]LJRU~ EL]RQ WiVD D] , WpWHOEL]RQ WiViKR]KDVRQOyDQW|UWpQKHW+DYDODPHOFV~FVSRQW IRNDDNNRUD]WDSRQWRWL]ROiOWSRQWQDNQHYH]]N .|YHWNH]PpQ $ * JUiI SiUDWODQ IRN~ FV~FVDLQDN D V]iPD SiURV 9DOyEDQD ∑ δ (v ) |VV]HJHWIHOOHKHWERQWDQLNpWUpV]UHNO|Q v ∈V gyûjtve ∑ δ (v) = v ∈V a páros ∑ δ (v ) + v ∈V ,δ ( v ) ≡ 0 mod ( 2 ) és a ∑ δ (v) = 2 E páratlan fokú csúcsokat azaz v ∈V ,δ ( v ) ≡1 mod ( 2 ) E{OOiWKDWyKRJD ∑ δ (v ) V]iPSiURV v ∈V ,δ ( v ) ≡1 mod ( 2 ) V PLYHO SiUDWODQ VRN SiUDWODQ V]iP |VV]HJH SiUDWODQ H]pUWD ∑ δ (v ) WDJMDLQDNDV]iPDFVDNSiURVOHKHW v ∈V ,δ ( v ) ≡1 mod ( 2 ) Utak, körök, fák +R]]RQ D I|OG VDUMDW PDJWHUP{ IYHW JP|OFVIiW*HQH]LV%UpVLWK, HILQLFLy $ G = ( E , ϕ ,V ) JUiI e1 , e2 ,., ek pOVRUR]DWRW W|U|WW YRQDOnak (
vagy egyszerûen csak YRQDOQDN HVHWOHJ VpWiQDN PRQGMXNKD ϕ (e1 ) = (v 0 , v1 ), ϕ (e2 ) = (v1 , v 2 ),., ϕ (ek ) = (v k −1 , v k ) HILQLFLy $] e1 , e2 ,., ek W|U|WW YRQDODW ~WQDN PRQGMXN KD D v0 , v1 , v2 ,., vk −1 , vk FV~FVRNSiURQNpQWNO|QE|]{HN $ IHQWL GHILQLFLyW ~J LV PHJIRJDOPD]KDWMXN NLFVLW V]HPOpOHWHVHEEHQ KRJ D * JUiI Y FV~FViEyO ~W PHJ YNED YDJ D] ~W RODQ Q OW W|U|WW YRQDO PHO VHKROVHP PHWV]L |QPDJiW HILQLFLy $] e1 , e2 ,., ek W|U|WW YRQDODW N|UQHN FLNOXVQDN PRQGMXNKDD v1 , v2 ,., vk −1 , vk FV~FVRNSiURQNpQWNO|QE|]{HNGHv0 = vk HILQtFLy $ G( E ,ϕ ,V ) JUiI XY FV~FVSRQWMDLQDN D G XY WiYROViJiQ az õket összekötõ legrövidebb út hosszát értjük. Ha a NpW SRQWRW QHP N|WL |VV]H ~W DNNRU D NpW SRQW WiYROViJiW YpJWHOHQQHN∞WHNLQWMN HILQtFLy $ G( E ,ϕ ,V ) JUiI SRQWMDL N|]|WWL WiYROViJ PD[LPXPiW D * gráf átmérõMpQHN QHYH]]N DPLW
GLDP YHO d (u, v ) MHO|OQN GLDP(*((ϕ 9)) = max u ,v ∈V 7pWHO +D D * (ϕ,V) gráf összefüggõ, akkor a csúcspontok halmaza metrikus tér az elõbb értelmezett távolság fogalomra Qp]YH %L]RQ WiV Az összefüggõség miatt d(u,v)∈5 pV G XY DNNRU pV FVDN DNNRUKDX Y 0LYHO LUiQ WDWODQ JUiIUyO EHV]pOQN QLOYiQ WHOMHVO D V]LPPHWULDLVD]D]G XY G YX A háromszög egyenlõség azért teljesedik, mert az u,v pontokat összekötõ utak legrövidebbikénél nem lehet rövidebb RODQ~WDPHOQpOPpJSOXV]N|YHWHOPpQWLVV]DEXQNWXGQLLOOLN D]W KRJ PpJ HJ WRYiEEL SRQWRW ZW LV WDUWDOPD]D d (u, v ) ≤ d (u, w) + d (w, v ) HILQLFLy $ G = ( E , ϕ ,V ) JUiIRW |VV]HIJJ{QHN PRQGMXN KD EiUPHOFV~FViEyOYLV]EiUPHOPiVLNFV~FViED~W HILQLFLy $ * JUiIQDN D UpV]JUiIMiW NRPSRQHQVQHN QHYH]]NKDUHQGHONH]LNDN|YHWNH]{WXODMGRQViJRNNDO L * |VV]HIJJ{ LL QHP OpWH]LN *QHN RODQ |VV]HIJJ{ UpV]JUiIMD PHO*
WYDOyGLPyGRQWDUWDOPD]]D 5|YLGHQ IRJDOPD]KDWXQN YROQD ~J LV KRJ * |VV]HIJJ{ PD[LPiOLVUpV]JUiIMDLW*NRPSRQHQVHLQHNQHYH]]N HILQLFLy: A G egyszerû gráfot |VV]HIJJ{pVQHPWDUWDOPD]N|UW IiQDN PRQGMXN KD ,7pWHO %iUPHO * ID WDUWDOPD] OHJDOiEE HJ HOV{IRN~ FV~FVRW %L]RQ WiV ,QGLUHNW EL]RQ WXQN 7HJN IHO KRJ D] iOOtWiV QHP LJD] D] QLOYiQ DQQLW MHOHQW KRJ * EiUPHO FV~FViQDN D IRND QpO QDJREE YDJ HJHQO{ QHP OHKHW D] |VV]HIJJ{VpJ PLDWW ,QGXOMXQN HO * YDODPHO Y FV~FViEyO Y EyO YH]HVVHQ H pO YEH YE{O H pO YEH pV tJ WRYiEE YN E{O HN YNED (O{EE YDJ XWyEE YLVV]D pUNH]QN HJ RODQ YM FV~FVED VLWWDN|U DKROPiUNRUiEEDQMiUWXQNPLYHO*QHN YpJHV VRN FV~FVD YDQ pV LQGLUHNW IHOWHYpVQN V]HULQW PLQGHJLN FV~FViQDN D IRND OHJDOiEE NHWW{ YROW $]D] KD EHpUNH]WQN YDODPHO FV~FVED HJ H pOOHO DNNRU HJ PiVLN H pOOHO RQQDQ WRYD LV
WXGWXQN EDOOyNi]QL 6 YpJO OiWWXN KRJ D] HM HMHN W|U|WWYRQDO HJ N|UH D * JUiIQDN HOOHQWpWEHQ D]]DO KRJ * ID YROW V D] HOOHQWPRQGiV RND QLOYiQ D] LQGLUHNW IHOWHYpVQNYDOD HILQtFLy$*JUiIRWHUGnekPRQGMXNKDNRPSRQHVHLIiN ,7pWHO+D*JUiIIDDNNRU V − 1 = E %L]RQ WiV $ * ID pOHLQHN V]iPD V]HULQWL WHOMHV LQGXNFLyYDOEL]RQ WXN+DD*QHNHJpOHYDQDNNRUD]iOOtWiV LJD]7pWHOH]]NIHOKRJEiUPHORODQIiUDLJD]D]iOOtWiV PHOQHNOHJIHOMHEEQpOHYDQ/HJHQPRVWD G = ( E , ϕ ,V ) IDJUiIQDN QpOHD]D] E = n + 1*HJpOpWW|U|OYH G1 = ( E1 , ϕ 1 ,V1 ) pV G2 = ( E 2 , ϕ 2 ,V2 ) NRPSRQHQVHNUH HVLN V]pW pV QLOYiQ PLQGNHWW{ ID PHOUH PiU D] LQGXNFLyV IHOWHYpV PLDWW LJD] D] iOOtWiV 7HKiW pUYpQHV V1 − 1 = E1 V2 − 1 = E2 H NpW XWyEEL HJHQOHWHW |VV]HDGYD V1 + V2 − 2 = E1 + E2 DGyGLN )LJHOHPEH YpYH KRJ V1 + V2 = V WRYiEEi E1 + E2 + 1 = E . Látható hogy az n+1 élû
gráfra is teljesül az iOOtWiV ,7pWHO +D D G = ( E , ϕ ,V ) JUiI HUG{ pV N NRPSRQHQVE{O iOO DNNRU V − k = E %L]RQ WiV $ IHOWpWHO V]HULQW D G = ( E , ϕ ,V ) JUiI D G1 = ( E1 , ϕ 1 ,V1 ) G2 = ( E 2 , ϕ 2 ,V2 ) Gk = ( E k , ϕ k ,Vk ) NRPSRQHVHNE{O iOO PHOHNUH UHQGUH WHOMHVO KRJ V1 − 1 = E1 , V2 − 1 = E2 ,., Vk − 1 = E k ( N GDUDE HJHQOHW PHJIHOHO{ ROGDODLW |VV]HDGYD DGyGLN D WpWHO iOOtWiVD $] , WpWHOEHQ PHJIRJDOPD]WXN KRJ HJ G = ( E , ϕ ,V ) IDJUiIQDN OHJDOiEE HJ HOV{IRN~ SO v1 ∈V , δ (v1 ) = 1 FV~FVD YDQ ( WpWHOW PRVW N|QQHQ SRQWRVtWKDWMXN RODQ IRUPiQ KRJ HJ IDJUiIQDN OHJDOiEE NpW HOV{IRN~ SRQWMD YDQ 9DOyEDQ D] , WpWHO V]HULQW D JUiI IRNDLQDN |VV]HJH SiURV D]D] D] HO{EE HPOtWHWW HOV{IRN~ FV~FVRQ NtYO WDUWDOPD] PpJ OHJDOiEE HJ v 2 ∈V , δ (v 2 ) = 1 mod(2) YDJ W|EE SiUDWODQ IRN~ FV~FVRW $] ( ) |VV]HIJJ{VpJ PLDWW 2 ≤ δ (v 3 ),2 ≤ δ (v
4 ),.,2 ≤ δ v V WRYiEEEi δ (v1 ) = 1, 3 ≤ δ (v 2 ) $] HO{EEL HJHQO{VpJHNNHO DOXOUyO EHFVOYH * IRNDLQDN |VV]HJpW ∑ δ (v ) ≥ 2 V DGyGLNDPLHOOHQWPRQGD],WpWHOQHN v ∈V 7pWHO%iUPHOIDJUiIQDNOHJDOiEEHOV{IRN~SRQWMDYDQ 9HJJNpV]UHKRJH]XWyEELiOOtWiVQHPMDYtWKDWyYDJLV YDQ RODQ ID DPHOQHN SRQWRVDQ HOV{IRN~ SRQWMD YDQ 6]HPOpOWHWKHWQN HJ RODQ JUiIRW PHOQHN FVXSiQ NpW HOV{IRN~ SRQWMDYDQHJIRQDOODOPHOQHNNpWYpJpUHFVRPyWN|WW|WQNV N|]EOV{KHOHNHQN|W|WWQNDIRQiOUD V − 2 FVRPyW$FVRPyNDWD JUiI FV~FVDLQDN pV NpW V]RPV]pGRV FVRPyW N|]YHWOHQO |VV]HN|W{ FVRPy PHQWHV IRQDO GDUDERW pOQHN WHNLQWQN $ PiVLN V]pOV{VpJHV IiW V]HPOpOWHVVN HJ WDUDMRVVOOHO $ ID pOHLQHN D WDUDMRVVO WVNpLW WHNLQWVN FV~FVSRQWRNQDN SHGLJ HJUpV]WDWDUDMRVVOWLOOHWYHDWVNpNV]DEDGRQPDUDGWYpJpW $IiQDNHNNRUYDQHJSRQWMDPHOQHNDIRNDNVD]|VV]HV W|EELFV~FVIRND
HILQLFLy$ G = ( E , ϕ ,V ) JUiID G1 = ( E1 , ϕ 1 ,V1 ) JUiIIDOL]RPRUIKD WHOMHVHGQHNDN|YHWNH]{IHOWpWHOHN (i) létezik kölcsönösen egyértelmû αOHNpSH]pVH(QHN(UH (ii)létezik kölcsönösen egyértelmû βOHNpSH]pVH9QHN9UH LLL ∀e ∈ E , ha ϕ (e) = v i , v j ( ⇒ ϕ 1 (α (e)) = (β (v1 ), β (v 2 )) ) ( ) *UiIRN L]RPRUILiMD NO|QE|]LN D WRSROyJLD KRPHRPRUILD IRJDOPiWyO 7HNLQWVQN SpOGiXO D]W D * JUiIRW DPHO NpW SRQWEyO V D] D]RNUD LOOHV]NHG{ KXURNpOE{O iOO 5HDOL]iOMD *W NpW |VV]HNDSFVROW NXOFVWDUWy NDULND KD V]pW NDSFVROMXN D NpW NDULNiW DNNRU D NDSRWW * JUiI L]RPRUI HOGH WRSROyJLDL pUWHOHPEHQ*QHPHNYLYDOHQV YHOHILQtFLy$ = (( ϕ9 ) JUiI IHV]tW{IiMiQDN PRQGMXN D * W KD UpV]JUiIMD QHN pV ID PiVUpV]W*PLQGHQFV~FVD QHLVFV~FVD 7pWHO$*JUiIQDNDNNRUpVFVDNDNNRUYDQIHV]tW{IiMDKD *|VV]HIJJ{ %L]RQ WiV
/HJHQ * |VV]HIJJ{ PXWDVVXN PHJ KRJ HNNRU OpWH]LN IHV]tW{IiMD +D * QHP WDUWDOPD] N|UW DNNRU D] |VV]HIJJ{VpJPLDWWIDpV|QPDJiQDNIHV]tW{IiMD+D*WDUWDOPD] N|UWDNNRUDN|UYDODPHOHpOpWW|U|OYH*E{O JUiIRWNDSXQN DPHO WRYiEEUD LV |VV]HIJJ{ PDUDG +D * QH YDQ N|UH DNNRU LVPpWHOKDJXQNHJH pOWD* JUiIEyO9pJHVVRNOpSpVHQEHOO HOMXWXQN HJ RODQ JUiIKR] PHO PpJ |VV]HIJJ{ GH PiU QLQFV N|UHH]D* N JUiIMyIHV]tW{IiMiQDN $] iOOtWiV PHJIRUGtWiVD WULYLiOLV PLYHO D IDJUiI |VV]HIJJ{ 6 D] LV HOpJ PDJiWyO pUWHW{G{ KRJ KD D * JUiIQDN YDQ|VV]HIJJ{UpV]JUiIMDDNNRU*LV|VV]HIJJ{ 6RNHVHWEHQEL]RQXOKDV]QRVQDND]LUiQ WRWWIDIRJDOPD$ * LUiQ WRWW JUiIEDQ D] H H H pO VRUR]DW KD ϕ (H ) = (Y Y ) ϕ (H ) = (Y Y ) ϕ (H ) = (Y − Y ) pV Y ≠ Y KD L ≠ M $ * JUiIQDN N N N N L M
YDODPHOYFV~FVDJ|NHUHKD*EiUPHOYW{ONO|QE|]{FV~FViED HO OHKHW MXWQL LUiQ WRWW ~WWDO $ * JUiI LUiQ WRWW ID KD LUiQ WiV QpONO WHNLQWYH ID pV YDQ HJ Y J|NHUH PHOE{O EiUPHOFV~FViEDYH]HWLUiQ WRWW~W Teljes gráf, komplementer gráf HILQLFLy $ G = ( E , ϕ ,V ) JUiIRW Q V]|JSRQW~ WHOMHV JUiIQDN QHYH]]NKDEiUPHONpWNO|QE|]{FV~FViWpON|WL|VV]HEiUPHO PiVLNFV~FFVDOpV V = n -HOH.Q 7pWHO$.QQSRQW~WHOMHVJUiIpOHLQHNDV]iPD n(n − 1) 2 %L]RQLWiV $ .Q GHILQLFL{MD V]HULQW EiUPHO V]|JSRQW IRND Q $ JUiIXQNQDN |VV]HVHQ Q FV~FVSRQMD YDQ H]pUW D JUiI FF~SRQWMDL IRNDLQDN D] |VV]HJH SRQWRVDQ Q Q $] , WpWHO V]HULQWHNNRUDJUiIpOHLQHNDV]iPDSRQWRVDQ /HJHQ DGRWW D * = (( ϕ9 ) pV 9 = Q egyszerû gráf, s legyen KQ QHN D * = (( ϕ 9 ) RODQ UpV]JUiIMD PHO = (( ϕ9 ) YHO L]RPRUI 7|U|OMN .QQHN * = (( ϕ 9 ) K|] WDUWR]y pOHLW $ NDSRWW JUiI OHV] *
NRPSOHPHQWHUH 0iV PHJIRJDOPD]iVEDQ = (( ϕ 9 ) NRPSOHPHQWHUH D * = (( ϕ9 ) JUiIQDN KD = (( ϕ 9 ) pOHL WHOMHV JUiIIi HJpV]tWLN NL *W 1LOYiQ D WHOMHV JUiI NRPSOHPHQWHUH D] UHV JUiI pV IRUGtWYD D] UHV JUiI NRPSOHPHQWHUH D WHOMHV JUiI $] Q V]|JSRQW~WHOMHVJUiIRWOHKHW~JWHNLQWHQLPLQWD]QFV~FVSRQW~ QGLPHQ]LyVV]LPSOH[JUiIMiW )HODGDWRN 5DM]ROMRQ RODQ FV~FVSRQW~ JUiIRNDW PHOHNQHN KDUPDGIRN~ pV QHJHGIRN~ SRQWMD YDQ +iQ pOH YDQ D UDM]ROW JUiIRNQDN" +iQ RODQ FV~FVSRQW~ JUiI YDQ DKRO D FV~FVRN IRNDL UHQGUH (J WiUVDViJ WDJMDL Np]IRJiVVDO GY|]OLN HJPiVW %L]RQ WVD EH KRJ SiURV D]RQ HPEHUHN V]iPD DNLN SiUDWODQ VRNV]RUIRJWDNNH]HW %L]RQ WVDEHKRJKDD G( E , ϕ ,V ) egyszerû gráfnak 2 vagy NHWW{QpO W|EE FV~FVD YDQ (V ≥ 2) DNNRU YDQ NpW D]RQRV IRNV]iP~ FV~FVD (JVDNNYHUVHQHQEiUPHOMiWpNRVMiWV]LNEiUPHOPiVLN
MiWpNRVVDO EL]RQ WVD EH KRJ D YHUVHQ EiUPHO V]DNDV]iEDQ YDQ NpW RODQ YHUVHQ]{ DNLN DGGLJ D]RQRV V]iP~ PpUN{]pVW MiWV]RWWDN 6. Hány olyan 5 pontú ( nem izomorf ) egyszerû gráf van, PHOUHWHOMHVHGLNKRJEiUPHOSRQWMiQDNDIRNDOHJDOiEE %L]RQ WVDEHKRJKDD*|VV]HIJJ{JUiIFV~FVDLQDND V]iPD n ≥ 2 pVpOHLQHNDV]iPDQQpONHYHVHEEDNNRUYDQHOV{IRN~ FV~FVDLV %L]RQ WVD EH KRJ KD Q V]iP~ WHOHIRQN|]SRQW N|]O EiUPHO NHWW{ N|]|WW OpWHVtWKHW{ |VV]HN|WWHWpV DNNRU YDQ OHJDOiEEQV]iP~N|]YHWOHQ|VV]HN|WWHWpVLV +DHJQSRQW~JUiIPLQGHQSRQWMiQDNDIRNDOHJDOiEEQ DNNRUDJUiI|VV]HIJJ{ %L]RQ WVD EH KD D * JUiI PLQGHQ SRQWMiQDN DIRND OHJDOiEENHWW{DNNRUYDQN|UH (J VDNN FVDSDW EDMQRNViJUD Q FVDSDW QHYH]HWW EH V HGGLJ Q PpUN{]pVW MiWV]RWWDN OH 0XWDVVD PHJ KRJ YDQ N|]|WWN OHJDOiEE HJ FVDSDW PHO OHJDOiEE PpUN{]pVW PiU OHMiWV]RWW %L]RQ WVD EH KRJ D *
|VV]HIJJ{ JUiI YDODPHO pOpW W|U|OYHXMEyO|VV]HIJJ{JUiIRWNDSXQN 13. Bizonyítsa be, hogy az n pontú, n élû egyszerû gráfnak YDQOHJDOiEEHJN|UH %L]RQ WVD EH KRJ D G( E , ϕ ,V ) összefüggô egyszerû gráf DNNRU pV FVDN DNNRU PDUDG |VV]HIJJ{ HJ e ∈ E pOpQHN W|UOpVH XWiQKDYDQ*QHNRODQNN|UHPHOWDUWDOPD]]DHW 15. Bizonyítsa be, hogy az összefüggô egyszerû véges gráf pOHLQHN D KDOPD]D DNNRU pV FVDN DNNRU DONRW N|UW KD * YDODPHQQLIRND 0HOLND]DOHJQDJREESHJpV]V]iPDPHOUHDTFV~FV~ WHOMHVJUiISV]HUHVHQ|VV]HIJJ{ 17. Mutassa meg, hogy ha egy teljes egyszerû gráf éleihez EiUKRJDQ LV LUiQ WiVW tUXQN HO{ DNNRU D] HUHGPpQO NDSRWW írányított gráfnak szükségszerûen létezik irányított feszítô IiMD /HJHQ δ 0 (G( E , ϕ ,V )) = min (δ (v )) ≥ v ∈V V −1 2 ,s G egyszerû gráf. %L]RQ WVDKRJ*|VV]HIJJ{,JD]OHV]HD]HO{EELiOOtWiVKD V − 1
WHOMHVODKROD>[@IJJYpQD] 2 FVDND δ 0 (G( E , ϕ ,V )) = min (δ (v )) ≥ v ∈V [HJpV]UpV]pWMHO|OL 0XWDVVD PHJ KRJ HJ Q FV~FV~ pV N |VV]HIJJ{ NRPSRQHQVE{OiOOyJUiIEDQD]pOHNV]iPDOHJIHOMHEE (n − k )(n − k + 1) 1 2 OHKHW 20.Bizonyítsa be, hogy egy összefüggô egyszerû gráfban EiUPHO NpW PD[LPiOLV KRVV]~ViJ~ ~WQDN YDQ OHJDOiEE HJ N|]|V FV~FVD $] DOiEEL * JUiIRN N|]O PHOHN L]RPRUIDN PHOHN QHP" 22.Határozza meg a kocka gráfjának az átmérõjét +DWiUR]]D PHJ D] Q GLPHQ]LyV NRFND pV D] Q GLPHQ]LyV szimplex átmérõjét. 24. Határozza meg azon G gráfok átmérõinek a maximumát illetve minimumát, amelyek összefüggõek és csúcspontjaik száma n. Adjom meg olyan gráfokat, melyek átmérõje megegyezik az elõbb HPOtWHWPD[LPXPPDOLOOHWYHPLQLPXPPDO 3HUPXWiFLyNYDULiFLyNNRPELQiFLyNLVPpWOpVVHOpVLVPpWOpVQpONO HILQtFLy $] Q NO|QE|]{
HOHP HJ SHUPXWiFLyMiQ Q HOHP HJ U|J]tWHWWVRUUHQGMpWpUWMN 3pOGiXO Q HVHWpQ OHJHQ D V]yEDQ IRUJy HOHPHN V D] DGRWW VRUUHQGMN $ SHUPXWiFLyW OHKHW ~J LV GHILQLiOQL PLQW egy n elemû halmaz önmagára való kölcsönösen egyértelmû leképezését. Az 1 2 3 4 5 6 HO{EEL SHUPXWiFLyW HNNRU PHJ OHKHW DGQL D] DODNEDQ H] D] 3 2 4 1 5 6 x DODN D IJJYpQHN WiEOi]DWWDO YDOy PHJDGiViQDN HJ W|P|U MHO|OpVH f ( x ) $ IHOV{ VRUEDQ IJJHWOHQ YiOWR]y pUWpNHL D] DOVy VRUEDQ D IJJ{ YiOWR]y PHJIHOHO{ pUWpNHL V]HUHSHOQHN Q IDNWRULiOLVQDN PRQGMXN D] HJPiVXWiQ N|YHWNH]{ Q V]iPRN V]RU]DWiW MHOH Q ⋅⋅ Q ⋅Q pV PHJiOODSRGiVV]HULQW 3Q Q 7pWHO Az n elemû H halmaz összes különbözô permutációinak a száma %L]RQ WiV$+KDOPD]HOHPHLQHNDV]iPDV]HULQWLWHOMHVLQGXNFLyYDO EL]RQ WXQN Q HVHWpQ D] iOOtWiV
LJD] PHUW HJ HOHPHW FVDN HJIpOHNpSSHQ OHKHW VRUED iOOtWDQL 7pWHOH]]N IHO KRJ D] iOOtWiV LJD] QUH V PXWDVVXN PHJ H IHOWHYpVE{O N|YHWNH]LN KRJ LJD] Q UH LV /HJHQPHJDGYDD+KDOPD]HOHPHLQHNHJU|J]tWHWWVRUUHQGMHSO (h1 , h2 ,., hn ) %iUPHOLNSHUPXWiFLyQiOD"MHOOHOMHO|OWKHOHN (? h1 ,? h2 ,.,? hn ?) YDODPHOLNpUH EHV]~UKDWMXN D KQW /iWKDWy KRJ D] Q HOHP EiUPHO SHUPXWiFLyMiEyO (n+1) darab különbözô (n+1) elemû permutációt lehet legyártani, tehát Q H]pUW D EiUPHO QUH WHOMHVO D] (h1 , h 2 , . , h n ) V PLYHO Q Q EL]RQ WiVVDONpV]YDJXQN HILQtFLy/HJHQDGRWWQHOHPPHOHNN|]O l1 , l2 ,., lk UHQGUH HJIRUPD pV l1 + l2 +. + lk = n H]HQ HOHPHN HJ U|J]tWHWW VRUUHQGMpW HJ LVPpWOpVHV SHUPXWiFLyQDNQHYH]]N 3pOGiXO KD HJ RV]WiO WDQXOyLW D GROJR]DWXNUD NDSRWW MHJHN DODSMiQVRUUHQGEHiOOtWMXNDNNRUD]HJIRUPDMHJHWNDSRWWWDQXOyNN|]|WW PiUQHPWHV]QNNO|QEVpJHW
7pWHO +D D] Q HOHP N|]O l1 , l2 ,., lk l1 + l2 +. + lk = n DNNRULVPpWOpVHVSHUPXWiFLyLQDNDV]iPD Pn,l1 ,l2 ,.,lk UHQGUH HJIRUPD pV n! l1 ! l2 !. lk ! %L]RQ WiV /HJHQ PHJDGYD D (h1 , h2 ,., hn ) HOHPHNQHN YDODPHO LVPpWOpVHV SHUPXWiFLyMD $ SHUPXWiFLyEDQ OpY{ HJIRUPD HOHPHNHW NO|QE|]WHVVN PHJ LQGH[HNNHO pV SHUPXWiOMXN D] HGGLJ D]RQRVQDN WHNLQWHWW HOHPHNHW LV ^3pOGiXO HJ I{V RV]WiOEDQ |W|VW pV QpJHVW DGWXQN pV D GROJR]DWRNDW VRUED RV]WRWWXN NL LQGH[HOYH D] HGGLJ HJIRUPiQDN WHNLQWHWW MHJHNHW (51 ,41 , 4 2 ,52 ,53 ) ( SHUPXWiFLyEyO LVPpWOpV QpONOL SHUPXWiFLy DGyGLN` (JHWOHQ HJ LVPpWOpVHV SHUPXWiFLyEyO l1 ! l2 !. lk ! V]iP~ LVPpWOpV QpONOL SHUPXWiFLyW NDSXQN H]pUW Pn ,l1 ,l2 ,.,lk l1 ! l2 ! lk ! Q V LQQHQ PiUYDOyEDQl1 ! l2 !. lk !YHOYDOyRV]WiVXWiQDGyGLNDWpWHOiOOtWiVD HILQtFLy Q NO|QE|]{ HOHP N|]O NLYiODV]WRWW UHQGH]HWW N HOHPHW
LVPpWOpVQpONOLNDGRV]WiO~YDULiFLyQDNQHYH]]N 3pOGiXO KD HJ IXWy YHUVHQHQ K~V]DQ LQGXOWDN pV D] HOV{ EHIXWyW GtMD]WiN DNNRU D GtMD]RWWDNDW WHNLQWKHWMN HOHP KDUPDG RV]WiO~ YDULiFLyMiQDN n k V 7pWHO Q HOHP LVPpWOpV QpONOL NDG RV]WiO~ YDULiFLyLQDN D V]iPD Q Q Q N %L]RQ WiV 5|J]tWHWW Q PHOOHWW N V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN N UH D] iOOtWiV LJD] PLYHO Q HOHPE{O W SRQWRVDQ Q IpOHNpSSHQ OHKHW NLYiODV]WDQL 7pWHOH]]N IHO KRJ NUD WHOMHVHGLN pV LJD]ROMXN N UH %iUPHOLN (h1 , h2 ,., hk ) NDG RV]WiO~ YDULiFLyKR] QN HOHP N|]O YiODV]WKDWXQN HJ KNW KRJ HJ (h1 , h2 ,., hk , hk +1 ) N HG RV]WiO~ YDULiFLyW NDSMXQN $]D] LJD] D N|YHWNH]{ |VV]HIJJpV Vkn (n − k ) = Vkn+1 PLiOWDOWpWHOQNEL]RQ WiVWQHUW HILQtFLyQNO|QE|]{HOHPE{OKDNHOHPHWROPyGRQYiODV]WXQNNL KRJ HJ HOHPHW W|EEV]|U LV YiODV]WKDWXQN pV D VRUUHQG V]iPtW DNNRU Q
HOHPNDGRV]WiO~LVPpWOpVHVYDULiFLyMiUyOEHV]pOQN 3pOGiXO KD YDODNL NLW|OW HJ WL]HQQpJ PpUN{]pVHV WRWy V]HOYpQW DNNRUD][HOHPHNQHNPHJDGWDHJHGRV]WiO~YDULiFLyMiW 7pWHOQNO|QE|]{HOHP|VV]HVNDGRV]WiO~LVPpWOpVHVYDULiFLyLQDN DV]iPDVkn,ism = n k %L]RQ WiV -HO|OMH QQ D] Q NO|QE|]{ HOHPHW H]HQ elemek közül k-t egymásután leírva egy legfeljebb k jegyû számot kapunk az QDODS~V]iPUHQGV]HUEHQPHOHNQHNDV]iPDQLOYiQn k VH]]HODEL]RQ WiV NpV] 7HNLQWKHWMN D] Q NO|QE|]{ HOHP HJ NDG RV]WiO~ LVPpWOpVHVH variációját úgy is mint az n elemû H halmaz önmagával vett k-szoros direkt V]RU]DWiQDN HJ HOHPpW V DNNRU D] LV HOpJ QLOYiQYDOy KRJ N + ⊗ + ⊗ ⊗ + = + ,WW H MHO|OL D + KDOPD] HOHPHLQHN D V]iPiW 9HJN N észre azt is, hogy az n elemû H halmaz k szoros direkt szorzatának a (h KKN HOHPpWWHNLQWKHWMNROPyGRQLVPLQWD]. ^N`KDOPD]RQ
pUWHOPH]HWW I IJJYpQW PHOQHN D] pUWpNHL UHQGUH K K KN (NNRU D K-n értelmezett H-beli értékeket felvevõ különbözõ függvények száma nN *RQGROMD YpJLJ D .HGYHV 2OYDVy KRJ D Q pUWHOPH]HWW +EpOL pUWpNHNHW felvevõ injektív függvények száma Vkn Q Q Q N HILQtFLyQNO|QE|]{HOHPN|]ONLYiODV]WYDNHOHPHWPHOHNQpOD UHQGH]pVUH QHP YDJXQN WHNLQWHWWHO D] Q HOHP HJ NDG RV]WiO~ NRPELQiFLyMiWNDSMXN 3pOGiXO KD YDODNL D] |W|V ORWWyQ KHOHVHQ NLW|OW HJ V]HOYpQW DNNRU D HOHPQHN PHJDGWD HJ |G RV]WiO~ NRPELQiFLyMiW ÈOODSRGMXQN n n n! V]iPRW V]RNiV ELQRPLiOLV PHJ DEEDQ KRJ IRJMD MHO|OQL D k k (n − k )! k ! HJWWKDWyQDNLVQHYH]QL n 7pWHOQHOHPNDGRV]WiO~NRPELQiFLyLQDNDV]iPDCkn k %L]RQ WiV Q HOHP YDODPHO LVPpWOpV QpONOL NDG RV]WiO~
NRPELQiFLyMiEyONV]iP~NDGRV]WiO~LVPpWOpVQpONOLYDULiFLyQHUKHW{ KD D] HOHPHNHW HJPiV N|]|WW SHUPXWiOMXN 7HKiW IHQQiOO D N|YHWNH]{ n! Ckn N Vkn )LJHOHPEH YpYH KRJ Vkn = n(n − 1).(n − (k − 1)) = NDSMXN D WpWHO (n − k )! iOOtWiViW HILQtFLy +D D] Q HOHP N|]O RO PyGRQ YiODV]WXQN NL N GDUDERW KRJ HJ HOHP W|EEV]|U LV V]HUHSHOKHW pV D VRUUHQGUH QHP YDJXQN WHNLQWHWWHO DNNRU D] Q HOHP HJ LVPpWOpVHV NDG RV]WiO~ NRPELQiFLyMiUyO EHV]pOQN Ckn,ism. 7pWHO Q HOHP NDG RV]WiO~ LVPpWOpVHV NRPELQiFLyLQDN D V]iPD n + k − 1 = k %L]RQ WiV $ EL]RQ WiV DODS|WOHWH U|YLGHQ FVXSiQ DQQL KRJ megadunk egy kölcsönösen egyértelmû leképezést (n+k-1) különbözô elem k-ad RV]WiO~ LVPpWOpV QpONOL NRPELQiFLyL pV Q NO|QE|]{ HOHP NDG RV]WiO~ LVPpWOpVHVNRPELQiFLyLN|]|WW/HJHQD]QNO|QE|]{HOHPQHJpV D] QN NO|QE|]{ HOHP QQQN $]
Q NO|QE|]{ HOHP HJ LVPpWOpVHV NDGRV]WiO~ NRPELQiFLyMD QDJViJ V]HULQW VRUED UHQGH]YH OHJHQ 0 ≤ α1 ≤ α 2 ≤. ≤ α k ≤ n $] (α 1 ,α 2 ,.,α k ) LVPpWOpVHV NRPELQiFLyQDN IHOHOWHVVN PHJ D] (α 1 ,α 2 + 1,α 3 + 2,.,α k + k − 1) HOHPHN LVPpWOpV QpONOL N DGRV]WiO~ NRPELQiFLyMiW /iWKDWy KRJ 0 ≤ α1 < α 2 + 1 <. < α k + k − 1 ≤ n + k − 1 H]pUW D] (α 1 ,α 2 + 1,α 3 + 2,.,α k + k − 1) HOHPHN YDOyEDQ D] QN NO|QE|]{ HOHP ismétlés nélküli kombinációja, s az összeadás egyértelmûsége miatt a leképezés kölcsönösen egyértelmû volta is garantált. %LQRPLiOLVpVSROLQRPLiOLVWpWHO 7pWHO SROLQRPLiOLV /HJHQ ∀a1 , a2 ,., a k ∈ R , ahol R kommutatív gyûrû pVQHJQpOQDJREEWHUPpV]HWHVV]iPHNNRU (a1 + a2 +.ak )n = n! a1s1 a2s2 . aksk s ! s !. s ! s1 + s2 + . + s k = n 1 2 k ∑ %L]RQ WiV Tudjuk, hogy bármely kommutatív gyûrûben a több tag
V]RU]iViWW|EEWDJJDOROPyGRQYpJH]KHWMNHOKRJPLQGHQWDJRWV]RU]XQN PLQGHQWDJJDO+DIHOtUMXND]QWpQH]{V (a1 + a2 +.+ak )(a1 + a2 ++ak ) (a1 + a2 ++ak ) V]RU]DWRW n DNNRUD] a1 elemet s1 − szer az n zá rójelbôl s1 n − s1 a2 elemet s2 − szer az n − s1 zá rójelbôl s2 n − s1 − s2 −.− sk −1 ak elemet sk − szor az n − s1 − s2 −.− sk −1 zá rójelbôl sk OHKHWNLYiODV]WDQL$] IpOHNpSSHQ n n − s1 n − s1 − s2 −.− sk −1 . sk s1 s2 n! (n − s1 )! . (n − s1 − s2 −− sk −1 )! n! (n − s1 )! s1! (n − s1 − s2 )! s2 ! (n − s1 − s2 −.− sk )! sk ! s1 ! s2 ! sk ! 6 H] XWyEEL HJHQO{VpJ MREEROGDOiQ D WpWHOEHQ V]HUHSO{ a1s1 a2s2 . a ksk WDJ HJWWKDWyMDiOODPLYHOiOOtWiVXQNDWEL]RQ WRWWXNLV 7pWHO ELQRPLiOLV WpWHO /HJHQ ∀a1 , a2 , ∈ R , ahol
R kommutatív gyûrû pVQHJQpOQDJREEWHUPpV]HWHVV]iPHNNRU (a1 + a2 ) = n s1 = n n ∑ s a s1 = 0 s1 1 a2n − s1 1 %L]RQ WiV .|YHWNH]PpQ $ WpWHO D SROLQRPLiOLV WpWHO VSHFLiOLV HVHWH n n n n n n + + +.+ + = 2 ∗ 0 1 2 n − 1 n (1 + 1)n = n n n n −1 n n n − + −.+(−1) + (−1) = 0 ∗∗ 0 1 2 n − 1 n (1 − 1)n = 6]LWDIRUPXOD $ V]LWD IRUPXOD D] HUDWRV]WKHQpV]L V]LWD OHV]iUPD]RWWMD DEEDQ D] pUWHOHPEHQ KRJ D] HUDWRV]WKHQpV]L V]LWD PyGV]HUW DGRWW D]RQ N V]iPRN PHJKDWiUR]iViUD PHOHN SUtPV]iPRN HJ HO{UH PHJDGRWW YpJHV KDOPD]iQDN HJLN HOHPpYHO VHP RV]WKDWyN $ V]LWD IRUPXOD NpSOHWHW DG D + KDOPD]D]RQHOHPHLQHNDV]iPiUDPHOHNQHPHOHPHL+HO{UHDGRWW H1 , H2 ,.,
Hn UpV]KDOPD]DLHJLNpQHNVHP 7pWHO V]LWDIRUPXOD /HJHQ DGRWW D + YpJHV KDOPD] pV H1 , H2 ,., Hn UpV]KDOPD]DLHNNRU + ∪ + ∪+ = + − + − + − − + + + ∩ + + + ∩ + + + + ∩ + + Q + + ∩ + + + + (−) ∩ + − + ∩ + ∩ + − − + − Q Q + ∩ + ∩ + ∩∩+ Q Q Q = + + ∑ (−) Q − ∑ V = ∩+ %L]RQ WiV ,VPHUW KRJ + ∪ + ∪∪+ Q ∩ + + + − Q Q + ∩ + ∩∩+ L ≤ L < L < < LV ≤ Q V Q L LV = + − + ∪ + ∪∪+ H]pUW D Q Q EL]RQ WDQGyHJHQO{VpJHNYLYDOHQVD]DOiEELYDO + ∪ + ∪ + ∪∪+ Q = ∑ (−) Q ∑ − V = + ∩ + ∩∩+ L ≤ L < L < < LV ≤ Q V L LV ∗ (] XWyEEL IRUPXOD EL]RQ WiViW Q V]HULQWL WHOMHV LQGXNFLyYDO YpJH]]N Q UH D] iOOtWiV QLOYiQYDOyDQ LJD] Q HVHWpQ + ∪ + = −
+ + − + + − + ∩ + WHOMHVOPHUWDPHWV]HW HOHPHLW GXSOiQ V]iPROWXN 7pWHOH]]N IHO KRJ D IRUPXOD LJD] KD Q ≥ ,JD]ROMXN D] iOOtWiVW QUH $ [+ ∪ + ∪ + ∪ ∪+ Q− ] ∪ + Q = + ∪ + ∪ + ∪ ∪+ Q− + + Q − (+ ∪ + ∪ + ∪ ∪+ Q− ) ∩ + Q IRUPXODD] Q VSHFLiOLV HVHW DONDOPD]iViYDO NDSKDWy PHJ -REE ROGDOiQDN XWROVy WDJMiUDDONDOPD]YDDGLV]WULEXWLYLWiVWDGyGLND]DOiEELFpOMDLQNQDNMREEDQ PHJIHOHO{ IRUPXOD [+ ∪ + ∪ + ∪ ∪+ Q− ] ∪ + Q = + ∪ + ∪ + ∪ ∪+ Q− + + Q − (+ ∩ + Q ) ∪ (+ ∩ + Q ∪ ∪(+ Q− ∩ + Q )) L $] L MREE ROGDOiQ V]HUHSO{ HOV{ WDJUD DONDOPD]YD D] LQGXNFLyV IHOWHYpVWtUKDWMXNKRJ − Q + ∪ + ∪ + ∪∪+ − Q = ∑ (−) = V Q ∪ + ∩ + ∪∪ + Q − Q + ∩ + ∩∩+ ≤ L < L < < LV ≤ Q − SHGLJDN|YHWNH]{W +
∩+ ∑ − V ∩+ L L − Q Q = ∑ (−) − V = Q ∪ + ∩ + ∪∪ + Q Q − ∩+ Q Q = ∑ (−) V = ∑ + ∩ + ∩∩+ ∩ + LOO ∑ + ∩ + ∩∩+ ≤ L < L < < LV ≤ Q − V + ∩+ LL DKDUPDGLNWDJUD LV − V ≤ L ≤ L ≤ ≤ LV ≤ Q − L L LV Q L L LV LLL $] L IRUPXOiED YLVV]D tUYD LL pV LLL W SRQWRVDQ D EL]RQ WDQGy ∗ IRUPXOiWNDSMXNVH]]HODEL]RQ WiVNpV] +D .|YHWNH]PpQ , (i1 ,i2 ,.,is ) ( ) EiUPHO ill. i , i ,, i HVHWpQ + ∩ + ∩∩+ , 1 , 2 , s L L LV VUH pV WHWV]{OHJHV = + ∩ + ∩∩+ DNNRU L L LV Q + ∪ + ∪∪+ = + + ∑ (−) + ∩ + ∩∩+ V = Q V Q V V .|YHWNH]PpQ ,, /HJHQ$N$QHlemû halmaz , ekkor a AW$EH n s n k NpSH]{V]UMHNWtYOHNpSH]pVHN IJJYpQHN V]iPD n k + ∑
(−1) (n − s) s s =1 %L]RQ WiV $] , N|YHWNH]PpQW DONDOPD]]XN DUUD D] HVHWUH KD +L MHO|OL D]RNDW D] $W $UH NpSH]{ IJJYpQHNHW PHOHNQpO D] $ DL HOHPH QHPOpSIHONpSNpQW 0HJMHJ]pV $ V]LWD IRUPXOiQDN D V]iPHOPpOHWEHQ YDQQDN NLIHMH]HWWHQ ILQRP pV UHQGNLYO PpO DONDOPD]iVDL .RPELQDWRULNiEDQ D V]LWD V]pS iOWDOiQRVtWiVDN|V]|QKHW{*&5RWDQDN 3HUPXWiFLyNV]LPPHWULNXVFVRSRUW )JJYpQHN N|UpEHQ LVPHUW D] |VV]HWHWW IJJYpQ NpS]pV mûvelete, ennek megfelelôen értelmezhetünk a permutációk között is egy mûveletet, a permutációk szorzását, mint a megfelelô leképezések HJPiVXWiQYpJUHKDMWiViW3pOGD 1 2 3 4 5 6 1 2 3 4 5 6 6 3 4 1 2 5 2 1 4 3 6 5 1 2 3 4 5 6 3 6 1 4 5 2 MREEUyOEDOUD V]RUR]WXQN DQQDN PHJIHOHO{HQ KRJ KD D] ,WW I J |VV]HWHWW IJJYpQ D]W MHOHQWL KRJ HO{V]|U YpJUHKDMWMXN JW PDMG
IW3HUV]HD]HO{EELV]RU]iVWHOYpJH]KHWMN 1 2 3 4 5 6 1 2 3 4 5 6 6 3 4 1 2 5 2 1 4 3 6 5 1 2 3 4 5 6 5 4 3 2 1 6 EDOUyOMREEUD LV D] HUHGPpQ SHUV]H iOWDOiEDQ PiV OHV] NLYpYH KD D NpW HOHP IHOFVHUpOKHW{ DOJHEUDL V]HPSRQWEyO D]RQEDQ ugyanaz az algebrai struktúra adódik mindkét esetben, célszerû adott WpPDN|U|QEHOO D]RQEDQ FVDN D] HJLN tUiVPyGRW KDV]QiOQL 0L D] XWyEEL D EDOUyOMREEUD tUiVPyGKtYHLYDJXQN 7pWHO Az n elemû H halmaz permutációi a permutációk szorzására Qp]YH FVRSRUWRW DONRWQDN -HOH 6Q D 6 D V]LPPHWULiUD XWDO D FVRSRUW V]RNiVRVQHYHDV]LPPHWULNXVFVRSRUW %L]RQ WiV,JD]ROMXNVRUEDQKRJWHOMHVHGQHNDFVRSRUWD[LyPiN L $ SHUPXWiFLyN V]RU]iVD két változós algebrai mûvelet PHUW D + önmagára való kölcsönösen egyértelmû leképezéseinek egymásutánja is, H önmagára való kölcsönösen egyértelmû leképezése. LL
$] DVV]RFLDWtYLWiV LV WHOMHVO PLYHO OHNpSH]pVHN V]RU]iVD PLQGLJDVV]RFLDWtY LLL /pWH]LNHJVpJHOHPWLD]LGHQWLNXVOHNpSH]pV LY 0LQGHQ HOHPQHN YDQ LQYHU]H is, mivel a kölcsönösen egyértelmû OHNpSH]pVHNLQYHUWiOKDWyN HILQtFLy$]WDSHUPXWiFLyWPHOEHQNpWHOHPFVHUpOWFVXSiQKHOHW 1 2 . i j n WUDQV]SR]LFLyQDN QHYH]]N 3pOGiXO $] SHUPXWiFLy D] L 1 2 . j i n MHOHPHNQHNHJWUDQV]SR]LFLyMD %iUPHO WUDQV]SR]LFLyW IHOtUKDWXQN V]RPV]pGRV WUDQV]SR]LFLyN 1,2,., i ,, j ,, n V]RU]DWDNpQW $] LGHQWLNXV SHUPXWiFLyEyO E{O ( M − L) GDUDE 1,2,., i ,, j ,, n V]RPV]pGRV HOHPQHN D WUDQV]SR]LFLyMiYDO FVHUpMpYHO NDSMXN D . j − 1 j n 1 2 . i SHUPXWiFLyW V H] XWyEEL SHUPXWiFLyEyO i − j − 1 j i. n 1 2 . i + 1 b g 1 2 . i j n V]RPV]pGRV HOHP FVHUpYHO DGyGLN D SHUPXWiFLy D]D] D] 1 2 . j i n LGHQWLNXVSHUPXWiFLyEyO (2(i − j )
− 1) V]RPV]pGRVHOHPQHNDFVHUpMpYHOPHJNDSMXN D]LWMYHOIHOFVHUpO{WUDQV]SR]LFLyW HILQtFLy 2 1 α 1 α 2 . i . α i . j . α j $] αi , α j HOHPHN LQYHU]LyEDQ YDQQDN D] . n SHUPXWiFLyEDQKD α j < α i .α n HILQtFLy 9DODPHO SHUPXWiFLyW DV]HULQW PRQGXQN SiURVQDN LOO SiUDWODQQDN KRJ D SHUPXWiFLyEDQ OpY{ LQYHU]LyN V]iPD SiURV YDJ SiUDWODQ $] HGGLJLHN DODSMiQ QLOYiQYDOy KRJ V]RPV]pGRV HOHPHN FVHUpMHNRU D SHUPXWiFLyEDQ OpY{ LQYHU]LyN V]iPD YDJ HO Q{ YDJ HJJHO FV|NNHQ 6 PLYHO EiUPHO WUDQV]SR]LFy D] LGHQWLNXV SHUPXWiFLyEyO SiUDWODQ VRN V]RPV]pGRV HOHP FVHUpMpYHO PHJNDSKDWy H]pUW EiUPHO WUDQV]SR]LFLy SiUDWODQSHUPXWiFLy 7pWHO V]RU]DWDNpQW %iUPHO SHUPXWiFLy HO{iOO YpJHV VRN WUDQV]SR]LFLy %L]RQ WiV +D DGRWW YpJHV VRN HOHPQHN HJ U|J]tWHWW VRUUHQGMH DNNRU HOHPHNQHN SiURQNpQWL IHOFVHUpOpVpYHO HOMXWKDWXQN EiUPHO PiV HO{UH U|J]tWHWW VRUUHQGKH] LV
$] HOHPHNQHN D V]iPD V]HULQW EL]RQ WKDWXQN Q Q UH D] iOOtWiV WULYLiOLV 7HJN IHO KRJ D] iOOtWiV LJD] Q≥ UH pV EL]RQ WVXN QUH $] LQGXNFLyV IHOWHYpV V]HULQW HOpUKHW{ WUDQV]SR]LFLyNNDO KRJ D] HOV{ Q HOHP D KHOpQ OHJHQ KD D] XWROVy NHWW{ QHP D KHOpQ iOO DNNRU PHJFVHUpOYH {NHW NpV] YDJXQN D EL]RQ WiVVDO .|YHWNH]PpQ $ SiURV SHUPXWiFLyN D V]RU]iVUD Qp]YH FVRSRUWRW DONRWQDN $SiURVpVDSiUDWODQSHUPXWiFLyNV]iPDPHJHJH]LNKDn ≥ 2 $]QHOHP|VV]HVSHUPXWiFLyLQDNDFVRSRUWMiWW|EEIpOHPyGRQLVOHKHW UHSUH]HQWiOQL /HJHQ DGRWW D] Q GLPHQ]LyV WpUEHQ HJ V]DEiORV Q FV~FVSRQW~ 6=Q V]LPSOH[ $] 6=Q V]LPSOH[ |QPDJiUD YDOy WiYROViJWDUWy KRPRJpQ OLQHiULV OHNpSH]pVHLQHN D FVRSRUWMD SRQWRVDQ D] Q HOHP V]LPPHWULDFVRSRUWMiYDOHJH]LNPHJ 7HNLQWVN D]RNDW D] E 1 2 . i α α 2 . α i 1 . j . α j . n . α n Q Q HV PiWUL[RNDW DPHOHN D] Q Q
( HJVpJ PiWUL[EyO ~J NHOHWNH]QHN KRJ D] LLN RV]ORSED( α i LNHOHPHNHUO$] E 1 2 . i j n PiWUL[RNDV]RNiVRV α 1 α 2 . α i . α j . α n V]RU]iVUD Qp]YH FVRSRUWRW DONRWQDN V H FVRSRUW L]RPRUI D] Q HOHP V]LPPHWULDFVRSRUWMiYDO )HODGDWRN $] $ YiURVEyO % YiURVED RQQDQ &EH ~W YH]HW +iQIpOHNpSSHQ OHKHWHOMXWQL$EyO&EH%QNHUHV]WO" .pW YpJYiUQDN NDWRQiMD YDQ NDWRQiW NLiOOtWDQDN SiUYLDGDOUD+iQIpOHNpSSHQYiODV]WKDWQDNNLHJSiUW" (J KHJ FV~FViUD ~W YH]HW (J WXULVWD IHOPHJ YDODPHO ~WRQ PDMGOHM|QHJPiVLNRQ+iQIpOH~WYRQDON|]|WWYiODV]WKDWRWW" $VDNNWiEOiQKiQIpOHNpSSHQYiODV]WKDWXQNNL L HJIHKpUpVHJIHNHWHPH]{W LL HJ IHKpU pV HJ IHNHWH PH]{W RO PyGRQ KRJ NO|QE|]{ VRUED pVNO|QE|]{RV]ORSEDOHJHQHN" +DW Ki]DVSiU N|]O KiQIpOHNpSSHQ OHKHW NLYiODV]WDQL HJ IpUILW
pVHJQ{WKRJDNpWNLYiODV]WRWWQHPKi]DVSiU" (JNRViUEDQDOPDLOO EDUDFN YDQ -XOLVND NLYHV] DOPiW YDJ HJ EDUDFNRW -XOLVND XWiQ -DQFVL YiODV]W HJ DOPiW pV HJ EDUDFNRW LV0LNRUYDQ-DQFVLQDNW|EEYiODV]WiVLOHKHW{VpJHKD-XOLVNDDOPiWYDJ KDEDUDFNRWYHWW" -DQFVLND pV -XOLVND YLUiJRW V]HGWHN D] HUG{EHQ KyYLUiJRW LEROiW pV JyODKtUW +D]DIHOp PHQYpQ HORV]WRWWiN D YLUiJRW HJPiV N|]|WWKiQIpOHNpSSHQWHKHWWpNPHJD]W" $] $ LOO % YiURVRNDW I{~WYRQDO N|WL |VV]H pV D]RNDW másodrendû útvonal keresztezi. Hányféle úton lehet eljutni A-ból B-be, IHOWpYHKRJHJ~WRQOHJIHOMHEEHJV]HUPHJQNYpJLJ" $] $EyO LQGXOy YRQDWRQ Q XWDV YDQ V %LJ P PHJiOOy OHJNpV{EE %EHQPLQGHQNLNLV]iOO+iQIpOHNpSSHQW|UWpQKHWH]" eUWHOPH]]H D] HO{EEL IHODGDWRW RO PyGRQ KRJ D] XWDVRNDW HJIRUPiQDNWHNLQWLVYiODV]ROMDPHJD]RWWIHOWHWWNpUGpVW" 7L]HQpJ
GLiN DQDOt]LVE{O YL]VJi]RWW 6]i] ÈUSiG 7DQiU ÒUQiO KiQIpOH HUHGPpQH OHKHW D YL]VJiQDN KD D]QDS FVDN DV MHJHN V]OHWWHN" +iQ SR]LWtY RV]WyMD YDQ D] Q HJpV] V]iP KD Q p α LOO D] Q Sα Sα SNα " N $] ODSRV IUDQFLD NiUWiEyO DW RV]WyQDN HPEHUQHN KiQIpOHNpSSHQOHKHWVpJH VH]" +iQIpOHNpSSHQ OHKHW D ODSRV PDJDU NiUWiEyO W NLYiODV]WDQLROPyGRQKRJPLQGDV]tQV]HUHSHOMHQOHJDOiEEHJV]HU" -y]VLNiQDN EDUiWMD YDQ DONDORPPDO PHJKtY N|]ON KiUPDW +iQIpOHNpSSHQWHKHWLH]WPHJ~JKRJXJDQD]DWiUVDViJQHM|MM|Q|VV]H NpWV]HU" 5DM]ROMRQ RODQ WpJODODSRW PHOHN ROGDODLQDN D KRVV]DL D] V]iPRNN|]ONHUOQHNNLPpJKR]]i~JKRJPLQGHJLN SRQWRVDQ HJV]HU OpS IHO KD D WpJODODSRN HJIRUPD ROGDODLW HJV]HUHV PXOWLSOLFLWiVVDO V]iPROMXN V D] |W WpJODODS PHJIHOHO{ PyGRQ HJPiV
PHOOpKHOH]YHHJ~MDEEWpJODODSRWDONRW 17. Hány négyjegyû ill ötjegyû számot írhatunk SiUDWODQV]iPMHJVHJtWVpJpYHORVV]iPUHQGV]HUEHQ fel 5 ill. 6. 18. Hány olyan ötjegyû szám van a tízes számrendszerben, melyben L DQHPIRUGXOHO{ LL OHJDOiEEHJSiURVV]iPMHJHWWDUWDOPD] LLL DpVDV]iPMHJHNHWWDUWDOPD]]D HJiJDV V]iOORGDL V]REiED KiQIpOHNpSSHQ OHKHW HOKHOH]QL WXULVWiW" )HKpUIHNHWH ViUJD NpNSLURV pV ]|OG J|QJ|NE{O KiQIpOH WDJ~ OiQFRW OHKHW FVLQiOQL" 0HQQL OHV] D]RQ OiQFRN V]iPD DPHOHNEHQ legalább egy piros és legalább egy zöld színû gyöngy is van? 21. Piros,fehér,zöld és kék színû golyóink vannak 6 különbözô PpUHWEHQ 1pJ GRER]EDQ HOKHOH]QN KDWKDW JROyW JHOYH DUUD KRJ HJ dobozba különbözô méretû, de azonos színû golyók kerüljenek. Hányféle módon lehet 4 különbözô méretû és színû golyót kiválasztani a dobozokból. 22. Határozza meg a
hétjegyû számok közül azoknak a számát, amelyek L FVDNSiUDWODQ LL FVDNSiURV LLL SiURVpVSiUDWODQ LY SiURVpVSiUDWODQV]iPMHJHWWDUWDOPD]QDN $ODSRVPDJDUNiUWiEyOODSRWK~]XQN+iQIpOHNpSSHQOHKHW D]iV]NLUiOIHOV{DOVyWt]HVNLOHQFHVQROFDVVRUUHQGHWNLK~]QL (J WiUVDViJEDQ IpUIL pV Q{ YDQ +iQIpOHNpSSHQ OHKHW {NHW HJNHUHNDV]WDON|Up~JOHOWHWQLKRJQHOM|QNpWQ{HJPiVPHOOHWW" 25. PHOHNEHQ Határozza meg azoknak az ötjegyû számoknak az összegét, L OHJIHOMHEED]V]iPMHJHNV]HUHSHOQHN LL D]V]iPRNOHJIHOMHEEHJV]HUIRUGXOQDNHO{ LLL OHJIHOMHEEDV]iPMHJHNiOOKDWQDN LY PHOHNQHNPLQGHQMHJHNO|QE|]{ +iURP IpUIL pV KiURP Q{L PDQ|NHQW KiQIpOHNpSSHQ OHKHW RO PyGRQ VRUED iOOtWDQL KRJ VHP NpW Q{ VHP NpW IpUIL QHP iOOKDW HJPiV PHOOHWW" P IpUIL pV Q Q{ N|]O NW NLYiODV]WDQDN PLQGHJLN NLYiODV]WRWW PiVPiV
DMiQGpNRW NDS +iQ RODQ HVHW OHV] DPLNRU D NLYiODV]WRWWDN N|]|WWSRQWRVDQOK|OJOHV]" 28. Adott a síkon n darab általános helyzetû egyenes ( nincs N|]|WWN SiUKX]DPRV pV VHPHOLN KiURP QHP LOOHV]NHGLN HJ SRQWUD +iQ WDUWRPiQUDERQWMiNDVtNRW" 29. Adott a 3 dimenziós euklideszi térben n általános helyzetû sík ( VHPHOLN NHWW{ QHP SiUKX]DPRV VHPHOLN KiURP QHP LOOHV]NHGLN HJ HJHQHVUH VHPHOLN QpJQHN QLQFV HJ N|]|V SRQWMD +iQ UpV]UH ERQWMiN DWHUHW" Q NO|QE|]{ WpQH]{E{O iOOy V]RU]DWRW KiQIpOHNpSSHQ OHKHW NpWNpWWpQH]{E{OiOOyWpQH]{NV]RU]DWiUDERQWDQL +iQIpOHNpSSHQOHKHW|WGREyNRFNiYDODWGREQL" +iQIpOHNpSSHQOHKHWKiURPGREyNRFNiYDOHWGREQL" +iQIpOHNpSSHQ KHOH]KHWQN HO HJ SROFRV V]HNUpQEH N|QYHWKDHJSROFRQHOIpUPLQGD" (J Ki]DVSiU KDW ~UEyO pV KDW K|OJE{O iOOy WiUVDViJRW KtY YHQGpJVpJEH RO PyGRQ KRJ KDWDQ D IpUM pV KDWDQ D
IHOHVpJ LVPHU{VHL +iQIpOHNpSSHQWHKHWLNH]WKDDIpUMQHN|WQ{pVKpWIpUILD IHOHVpJQHN KpWQ{pV|WIpUILLVPHU{VHYDQ" +yIHKpUNH OHYHOHW tUW D KpW W|USpQHN $ JRQRV] ERV]RUNiQ D]RQEDQ |VV]HFVHUpOWH D OHYHOHNHW RO JDOiGXO KRJ VHQNL VHP D VDMiWMiW NDSWD+iQIpOHNpSSHQWHKHWWHPHJD]WDJRQRV]ERV]RUND +iURPIpOH WpPiUyO OHYHOH] WXGyV %iUPHOLN WXGyV EiUPHOLN PiVLNNDO OHYHOH] GH FVDN HJ WpPiUyO %L]RQ WVD EH KRJ YDQ N|]|WWN OHJDOiEEWXGyVDNLNXJDQDUUyODWpPiUyOOHYHOH]QHNHJPiVVDO n + m n m n m n m %L]RQ WVDEHKRJ = + +.+ k 0 k 1 k − 1 k 0 +iQ V]yWiUW NHOO NLDGQL KRJ N|]YHWOHQO OHKHVVHQ IRUGtWDQL NO|QE|]{QHOYEiUPHOLNpU{OEiUPHOPiVLNUD" +iQUDYpJ]{GLND111000 − 1V]iP" ( )
+DWiUR]]DPHJD][RQHJWWKDWyMiWD] 1 + x 2 − x 3 SROLQRPEDQ 7 V]iPN|]OKiQRODQYDQDPHO L QHPRV]WKDWyVHPYHOVHPPDO LL QHPRV]WKDWyVHPYHOVHPPDOVHPWHO LY QHPRV]WKDWyVHPYHOVHPPDOVHPWHOVHPWHO" 42. Az n elemû halmaznak, hány lineáris rendezése van? (JFVRPDJPDJDUNiUWiEyOKiQIpOHNpSSHQOHKHWNLYiODV]WDQL (i) négy páronként különbözô színû lapot, (ii) négy páronként különbözô színû és értékû lapot, LLL QpJRODWPHOHNN|]ONHWW{NLUiO" $] XOWLQiO KiQIpOH OHRV]WiV OHKHWVpJHV" +iURP JHUPHN N|]|WW V]pWRV]WXQN GDUDE IRULQWRV pUPpW +iQIpOHNpSSHQ OHKHW PHJFVLQiOQL D] HORV]WiVW L KD D] LV HO{IRUGXOKDW KRJ YDODPHOLN JHUHN HJ pUPpW VHP NDS LL KD EiUPHOLN JHUPHN OHJDOiEE HJ pUPpW NDS LLL KD EiUPHOLN JHUPHN OHJDOiEE KiURP pUPpW NDS" +iQIpOHNpSSHQ K~]KDW IHO YDODNL D] HJLN NH]pQHN XMMDLUD NO|QE|]{ gyûrût, ha a hüvelykujjára nem húz
gyûrût és ha bármely másik ujjára fel fér mind D OiQ N|]|WW Uy]ViW tULV]W DPDULOOLV]W WXOLSiQW pV HJ RUFKLGHiW RV]WRWWDN V]pW RO PyGRQ KRJ PLQGHJLNN HJHJ YLUiJRW NDSRWW 0HQQL D OHKHWVpJHV HORV]WiVRN V]iPD" $ N|QYHVSROFRQ N|QY YDQ +iQIpOHNpSSHQ OHKHW N|]ON NLYiODV]WDQL RODW PHO QHP HJPiV PHOOHWW iOO" /HJHQ D] Q V]iP NDQRQLNXV DODNMD NO|QE|]{ SR]LWtY RV]WyLQDN D] |VV]HJpW p1α1 p2α 2 . pkα k +DWiUR]]D PHJ D] Q 50. Hány olyan "szó" készíthetô a felejthetetlen szóból, amelyben e betûk QLQFVHQHN HJPiV PHOOHWW" +iQIpOHNpSSHQ ERQWKDWXQN IHO HJ Q WHUPpV]HWHV V]iPRW KiURP WHUPpV]HWHV V]iP |VV]HJpUH" $ VRUUHQGHW LV ILJHOHPEH YpYH $GRWW D VtNRQ D] H LOO I SiUKX]DPRV HJHQHVHN HQ P GDUDE IHQ Q GDUDE NO|QE|]{ SRQW YDQ +iQ RODQ QHP HOIDMXOy KiURPV]|J YDQ D VtNRQ PHOQHN D FV~FVDL D] DGRWW SRQWRN N|]O NHUOQHN NL" (J QpJ]HW PLQGHQ ROGDOiW Q HJHQO{ UpV]UH RV]WXQN +iQ RODQ
KiURPV]|J YDQ DPHOQHN FV~FVDL D] HO{EE HPOtWHWW RV]WySRQWRN N|]O NHUOQHN NL" $GRWW D VtNRQ Q GDUDE HJHQHV DPHOHN N|]O QLQFV KiURP PHO HJ SRQWUD LOOHV]NHGQH pV EiUPHO NHWW{ PHWV]L HJPiVW +iQ PHWV]pVSRQWMD YDQ D] Q GDUDE HJHQHVQHN" $GRWW D VtNRQ Q GDUDE SRQW PHOHN N|]O VHPHOLN QLQFV HJ HJHQHVHQ +iQ HJHQHVpW KDWiUR]]iN PHJ D] HO{EE HPOtWHWW SRQWRN D VtNQDN" $GRWW D KiURPGLPHQ]LyV WpUEHQ Q SRQW PHOHN N|]O VHPHOLN KiURP QLQFV HJ HJHQHVHQ N|]ON P YLV]RQW HJ VtNEDQ KHOH]NHGLN HO D PHJPDUDGW QP SRQW N|]O PiU VHPHOLN QpJ QHP NRPSODQiULV +iQ VtN LOOHV]WKHW{ D] DGRWW Q SRQWUD" +iQ RODQ KiURPV]|J YDQ PHOQHN FV~FVDL HJEHHVQHN HJ DGRWW NRQYH[ Q V]|J FV~FVDLYDO GH QLQFV N|]|V ROGDOXN" .RPELQDWRULNDL ~WRQ LJD]ROMD KRJ L LLL n n n 3 + 6 + 6 = n 1 2 3 LL n n n 3 1 + 7 + 12 + 6 = (n + 1) 1 2 3
n n n 4 1 + 14 + 36 + 24 = (n + 1) − n 4 1 2 3 n n n n LY + 14 + 36 + 24 = n 4 1 2 3 4 (XOHUJUiIRN+DPLOWRQXWDNpV+DPLOWRQN|U|N /HRQDUG (XOHU QHYpKH] NDSFVROyGLN D] HOV{ JUiIHOPpOHWL PXQND PHO EDQ MHOHQW PHJ D 6]HQWSpWHUYiUL 7XGRPiQRV $NDGpPLD N|]OHPpQHLEHQ $] pUWHNH]pVpW (XOHU D] ~Q .|QLJVEHUJL KLGDN SUREOpPiMiYDO NH]GWH $ 3UHJHO IROy $ % V]LJHWHLW KLGDN N|W|WWpN |VV]H HJPiVVDO pV D -REE SDUW SDUWRNNDO LV $] $ V]LJHWHW NpW SiUKX]DPRV KtG N|W|WWH |VV]H D MREE SDUWWDO HJ KtG D % $ % V]LJHWWHO V XJDQFVDN NpW SiUKX]DPRV KtG YH]HWHW D] $UyO D EDO SDUWUD LV %W HJHJ KtG N|W|WWH |VV]H D EDO pV D MREE SDUWWDO LV pV %U{O %DO SDUW YH]HWHW HJ KtG $ UD LV PHOHW D] HO{EE PiU HPOtWHWWQN $ NpUGpV D] YROW EH OHKHW H
MiUQL D KLGDNDW YDODPHO IL[ & SRQWEyO RO PyGRQ KRJ PLQGHQ KtGRQ iWPHJQN SRQWRVDQ HJV]HU (XOHU OpQHJpEHQWHOMHViOWDOiQRVViJEDQPHJROGRWWDDIHODGDWRW HILQtFLy $ G = ( E , ϕ ,V ) JUiI / pOVRUR]DWiW ϕ (e1 ) = (v0 , v1 ), ϕ (e2 ) = (v1 , v2 ),., ϕ (en ) = (vn −1 , vn ) W ]iUW (XOHUYRQDOQDN QHYH]]N KD ( PLQGHQ pOpW SRQWRVDQ HJV]HU WDUWDOPD]]D pV v0 = vn KD v0 ≠ vn DNNRU /W Q OW(XOHUYRQDOQDNPRQGMXN +D YDODPHO JUiIQDN YDQ ]iUW (XOHUYRQDOD V]RNiV D]W (XOHUJUiI QpYYHO LOOHWQL 1LOYiQ HJ (XOHUJUiI |VV]HIJJ{ pV EiUPHO FV~FVSRQWMiQDN D IRND SiURV PLYHO KD D] (XOHUYRQDOD EHWpU YDODPHO FV~FVSRQWED PLQG DQQLV]RU NL LV PHJ RQQDQ 0HJMHJH]]N KRJ YDQ DNL (XOHUJUiIQDN QHYH] RODQ JUiIRW DPHOQHN EiUPHO FV~FVIRND SiURV $ N|YHWNH]{WpWHOOpQHJpEHQ(XOHUW{OV]iUPD]LN ( 7pWHO $ * JUiI DNNRU pV FVDN DNNRU (XOHUJUiI KD |VV]HIJJ{ pVEiUPHOFV~FViQDNDIRNDSiURV
%L]RQ WiV $] KRJ HJ (XOHUJUiI V]NVpJNpSSHQ |VV]HIJJ{ pV PLQGHQ FV~FVSRQWMiQDN D IRND SiURV D] UHPpOKHW{HQ YLOiJRV D WpWHO HO{WWL VRURNEyO $ IHOWpWHO HOpJVpJHV YROWiKR] WHNLQWVN D * JUiI YDODPHO Y FV~FViW$] H pO YH]HVVHQ YEyO YEH V YE{O H YEH pV tJ WRYiEE YpJO HN HOYLV] YN YED PHUW KD YDODPHO FV~FVSRQWED EHPHQWQN D FV~FVSRQW IRNiQDN SiURV YROWD PLDWW NL LV WXGWXQN M|QQL +D D NDSRWW / pOVRUR]DWWDUWDOPD]]DD*JUiIYDODPHQQLpOpWDNNRUNpV]YDJXQN+DQHP WDUWDOPD]]DSpOGiXOD]H pOWpVXXH]HQpONpWYpJSRQWMDDNNRUXE{O LQGXOYD D] HO{EELHNKH] KDVRQOyDQ WDOiOXQN HJ XJDQFVDN XEHQ YpJ]{G{ / ]iUW YRQDODW +D X D] / ]iUW YRQDO YDODPHO pOpUH LV LOOHV]NHGHWW YDJ / YDODPHO PiVLN FV~FVSRQWMD LOOHV]NHGHWW /UH DNNRU D] // ]iUW YRQDODNDWOHKHWHJHWOHQ]iUWYRQDOQDNWHNLQWHQL^+DD]/LOO/pOHLQHN QHP YROQD N|]|V FV~FVSRQWMD DNNRU /W
FVHUpOMN NL RO PyGRQ KRJ HO{V]|U YH]HVVQN XE{O XWDW / YDODPHO FV~FVSRQWMiED RODQ XWDW DPHOQHN QLQFV N|]|V pOH /HO V H]W D] XWDW HJpV]tWVN NL D] / ]iUW YRQDOOiD]HO{EELPyGRQ`+DQHPPDUDGWNLpONpV]YDJXQNKDLJHQDNNRU PHJLVPpWHOMND]HO{EELHOMiUiVWpVPLYHODJUiIXQNYpJHVHO{EEYDJXWyEE D]HOMiUiVXQNYpJHWpUpVPHJDGMDD*JUiIHJ]iUW(XOHUYRQDOiW ( 7pWHO Ha a G egyszerû összefüggô gráfnak, 2k darab páratlan IRN~FV~FVSRQWMDYDQDNNRUpOHLOHIHGKHW{NNGDUDEQ OW(XOHUYRQDOODO %L]RQ WiV(JpV]tWVNNLD*JUiIRWNGDUDEpOOHO YpROPyGRQ KRJ * PLQGHQ FV~FViQDN D IRND SiURV OHJHQ H] QLOYiQ PHJWHKHW{ KD JHOQN DUUD KRJ D] ~M pOHNNHO PLQGLJ SiUDWODQ IRN~ FV~FVRNDW N|VVQN |VV]H* UHHNNRUWHOMHVHGQLIRJD](WpWHOIHOWpWHOHVH]pUWOHV] HJ ]iUW(XOHUYRQDODLVPHOWULYLiOLVDQWDUWDOPD]]DD]~MNGDUDEpOWLV +D D N GDUDE ~M pOW W|U|OMN N GDUDE Q OW
(XOHUYRQDODW NDSXQN 0LpUW QHPNDSKDWXQNNHYHVHEEHWNQiO" VDEL]RQ WiVH]]HONpV] 6LU 9LOOLDP 5RYDQ +DPLOWRQ EHQ HJ RODQ MiWpNRW KR]RWWIRUJDORPEDPHOQHNDOpQHJHD]YROWKRJHJHO{UHPHJDGRWWJUiI FV~FVSRQWMDLW NHOOHWW EHMiUQL RO PyGRQ KRJ EiUPHO FV~FVEDQ SRQWRVDQ HJV]HUNHOOHWWMiUQLÈOOtWyODJDMiWpNQDNQHPYROWiWW{VLNHUH+DPLOWRQ NRUWiUVDLN|]|WW HILQtFLy $ G = ( E , ϕ ,V ) JUiI + ~WMiW ϕ (e1 ) = (v0 , v1 ), ϕ (e2 ) = (v1 , v2 ),., ϕ (en ) = (vn − 1 , vn ) W +DPLOWRQ~WQDN PRQGMXN KD v0 , v1 ,, vn FV~FVRN PLQG NO|QE|]{N pV H FV~FVSRQWRNRQ NtYO PiV FV~FVSRQWMD QLQFV * QHN HILQtFLy $ G = ( E , ϕ ,V ) JUiI . N|UpW +DPLOWRQN|UQHN PRQGMXN KD WDUWDOPD]]D*PLQGHQFV~FVSRQWMiWLV /iWV]yODJ QDJRQ KDVRQOy SUREOpPD KRJ YDODPHO JUiIQDN D] pOHLW MiUMXN EH SRQWRVDQ HJV]HU YDJ D FV~FVSRQWMDLW $] XWyEEL D]RQEDQ MyYDO QHKH]HEE 6 D] iOWDOiQRV HVHWEHQ
+DPLOWRQXWDN LOOHWYH +DPLOWRQN|U|N NHUHVpVpUHPDVHPLVPHUWLJD]iQMyDOJRULWPXV2SHUiFLyNXWDWiVWHUOHWpKH] WDUWR]LN D] XWD]y JQ|N SUREOpPiMD $] XWD]y JQ|N SUREOpPiMD D]W MHOHQWL KRJ D NHUHVNHGHOPL XWD]yQDN DGRWW YiURVRNDW NHOO EHMiUQLD RO PyGRQ KRJ PLQGHQ YiURVED FVDN HJV]HU PHJ HO pV YpJO YLVV]DWpU D FpJpQHN D V]pNKHOpUH (] HVHWEHQ D JUiI FV~FVSRQWMDL D] XWD]y iOWDO PHJOiWRJDWDQGy YiURVRN D] pOHN SHGLJ D YiURVRNDW |VV]HN|W{ ~WYRQDODN 7HUPpV]HWHVHQ HJHJ ~WQDN MyO PHJKDWiUR]RWW XWLN|OWVpJH LV YDQ V W|EE út esetén célszerû azt az utat választani, melynek a N|OWVpJH PLQLPiOLV +D YDODPHO * JUiI pOHLKH] YDOyV V]iPRNDW UHQGHOQN DNNRU KiOy]DWRNUyO IRODPRNUyO EHV]pOQN 6 QDJRQ WHUPpV]HWHVHQ YHW{GLN IHO PLQLPiOLV költségûLOO maximális nyereségû utak HVHWOHJ N|U|N NHUHVpVH $] HO{EE HPOtWHWW IHODGDWRN D NRPELQDWRULNXV RSWLPDOL]iOiV WiUJN|UpEH WDUWR]QDN
$N|YHWNH]{ WpWHO PHJIRJDOPD]iVD HO{WW HPOtWMN PHJ KRJ HJ N|U LOO ~W KRVV]iQDEHQQNV]HUHSO{pOHNV]iPiWpUWMN + 7pWHO Ha a G egyszerû gráfban bármely csúcspont foka legalább k k ≥ 2 DNNRUYDQDJUiIEDQHJOHJDOiEENKRVV]~ViJ~N|U %L]RQ WiV /HJHQ D * JUiIQDN D] / ~W DOHJKRVV]DEE~WMD6H]HQ~WFV~FVSRQWMDLWD NH]G{ SRQWWyO LQGXOYD MHO|OMH UHQGUH v0 , v1 ,., vk , vk +1 ,, vn $]KRJYIRND OHJDOiEE N D]W MHOHQWL KRJ D YW YHO |VV]HN|W{ H pOHQ NtYO PpJ OHJDOiEE N pO LQGXO NL Y EyO (]HQ pOHN PiVLN YpJSRQWMDL szükségszerûen szerepelnek L csúcspontjai N|]|WWPHUWHOOHQNH]{HVHWEHQ|VV]HWN|]pVEH NHUOQpQN D]]DO KRJ D] / ~W D OHJKRVV]DEE /HJHQ H PiVLN YpJSRQWMD PRQGMXN Y H YpJSRQWMD Y pV YpJO HN YpJSRQWMD YN (NNRU D] / ~WQDN D YWyO YNLJ WDUWy UpV] ~WMiQDN NpW YpJSRQWMiWN|WL|VV]HHN H]pUWHJN|UWNDSXQNPHOEHQOHJDOiEENpO
YDQVH]]HODEL]RQ WiVNpV] Y H Y H Y H H H H Y YN HN + 7pWHO +D D G = ( E , ϕ ,V ) egyszerû gráf bármely v csúcsának fokára WHOMHVOKRJ δ (v ) ≥ V 2 = n DNNRU*|VV]HIJJ{ 2 %L]RQ WiV /HJHQ X pV Y NpW NO|QE|]{ FV~FVD *QHN $ IHOWpWHO V]HULQW XYDO pV YYHO LV OHJDOiEE Q Q SRQW YDQ |VV]HN|WYH D] XEyO LOOHWYH YE{O LQGXOy pOHN iOWDO D IRNV]iP IHOWpWHO PLDWW $] HO{EE HPOtWHWW XYDO LOOHWYH YYHO N|]YHWOHQO |VV]HN|W|WW SRQWRN N|]|WW YDQ RODQPHOXYDOLVYYHOLV|VV]HYDQN|WYH KDQHPOHQQHLOHQDNNRU* FV~FVDLQDN D V]iPD QDJREE HJHQO{ YROQD PLQW >QQ@ D]D] X pV Y N|]|WWYH]HW~W +D DGRWW D G = ( E , ϕ ,V ) JUiI D FV~FVDLQDN D V]iPiW V = n V]RNiV * UHQGMpQHNPRQGDQLVpOHLQHNV]iPiW E = q D*JUiIPpUHWpQHNPRQGDQL+DD] XW D] H pO |VV]HN|WL D Y FV~FVVDO DNNRU XW LOO YW D] H pO YpJ SRQWMDLQDN QHYH]]N pV XW LOO YW
V]RPV]pGRVQDN PRQGMXN $] X FV~FVSRQWWDOV]RPV]pGRVFV~FVRNKDOPD]iW1 X YDOMHO|OMN + 7pWHO 22UH +DD*JUiIUDWHOMHVOKRJUHQGMHQ≥pV EiUPHO NpW QHP V]RPV]pGRV XY FV~FVSRQW IRNiQDN D] |VV]HJH QDJREE HJHQO{*UHQGMpQpO δ (X) + δ (Y) ≥ Q DNNRUQHNYDQ+DPLOWRQN|UH %L]RQ WiV ,QGLUHNW EL]RQ WXQN $]RQ JUiIRN N|]O PHOHNUH D WpWHO IHOWpWHOHL WHOMHVHGQHN GH D] iOOtWiV QHP WHNLQWVN YDODPHOLNHW D]RQ * JUiIRN N|]O PHOQHN D] pOHLQHN D V]iPD PD[LPiOLV 0D[LPiOLV DEEDQD]pUWHOHPEHQKRJKD* KH]KR]]iYHVV]QNHJRODQHpOWPHOD QHP V]RPV]pGRV X pV Y pOHNHW N|WL |VV]H DNNRU D] tJ NDSRWW * JUiI PiU WDUWDOPD]QL IRJ +DPLOWRQN|UW * PLQGHQ +DPLOWRQ N|UH WDUWDOPD]]D D] H pOW H]pUW YDQ RODQ / +DPLOWRQ~WMD * QHN PHO XW pV YW N|WL |VV]H OHJHQ H] D] ~W PHJDGYD ϕ (e1 ) = (v0 , v1 ), ϕ (e2 ) = (v1 , v2 ),., ϕ (en ) = (vn − 1 , vn ) u = v0 , v = vn iOWDO$ v 0 ,
v1 , . , v k , v k + 1 , , v n FV~FVSRQWRNNDONDSFVRODWEDQYHJNpV]UH KRJ KD YNV]RPV]pGRVXYDOD]D]YNHOHPH1 X QDNDNNRUYNQHPHOHPH1 Y QHN (OOHQNH]{HVHWEHQDv0 , vk +1 , vk + 2 ,., vn , vk , vk −1 ,, v0 +DPLOWRQN|UHYROQD* QHN7HKiW D 9^Y` SRQWRN N|]O D] XYDO V]RPV]pGRV SRQWRN QHP V]RPV]pGRVDN YYHO H]pUW δ (u) ≤ (n − 1) − δ (v ) V H] XWyEEL HJHQO{WOHQVpJ HOOHQWPRQG D WpWHO IHOWpWHOHLQHN .|YHWNH]PpQ *$ LUDF Ha az n=2k csúcspontú egyszerû G JUiIEiUPHOSRQWMiQDNDIRNDOHJDOiEENDNNRUYDQ*QHN+DPLOWRQN|UH Az idõrendben való jobb tájékozódás végett egységes jelölés mellett IHOVRUROMXND+DPLOWRQN|U|NUHYRQDWNR]ypUGHNHVHEEHUHGPpQHNHW-HO|OMH D* (ϕ9 JUiIFV~FVSRQWMDLQDNIRNV]iPDLWUHQGUH d1 ≤ d 2 ≤. ≤ d n |9| Q +DD * (ϕ,V) egyszerû gráfra (2<n) a következô feltételek valamelyike WHOMHVHGLNDNNRUYDQ*QHN+DPLOWRQN|UH *$LUDF 1 ≤ k ≤ n
⇒ d k ≥ 21 n. 22UH u, v ∈V , de (u, v ) ∉ E ⇒ δ (u) + δ (v ) ≥ n 3yVD/DMRV 1 ≤ k ≤ 1 n ⇒ dk > k . 2 -$%RQG MN d j , d k ≤ k − 1 ⇒ d j + d k ≥ n. 9&KYiWDO d k ≤ k 21 n ⇒ d n − k ≥ n − k 9DOyEDQ *EHQ OpWH]LN +DPLOWRQN|U PLYHO D N|YHWNH]PpQ IHOWpWHOHL OpQHJpEHQV]LJRU~EEDNPLQWD + WpWHOIHOWpWHOHL HILQLFLy$*JUiI UpV]JUiIMiWNDGIRN~IDNWRUiQDNPRQGMXNKD L * FV~FVDLQDNKDOPD]DPHJHJH]LNFV~FVDLQDNKDOPD]iYDO LL * EiUPHOFV~FVDD]RQRVIRNV]iP~ $ GHILQtFLyEyO OiWKDWy KRJ YDODPHO * JUiIQDN D . +DPLOWRQN|UH $ PHOOpNHOW HJEHQ PiVRGIRN~ IDNWRUD *QHN iEUiQOiWKDWyJUiIQDNYDVWDJV]DJJDWRWWLOOHWYHYpNRQYRQDOODOMHO|OWN HJHJ HOV{IRN~ IDNWRUiW (OOHQ{UL]]H OH D .HGYHV 2OYDVy KRJ D KiURP HOV{IRN~ IDNWRU N|]O EiUPHO NHWW{ V]RU]DWD D] iEUiQ OiWKDWy JUiIQDN HJHJ PiVRGIRN~ IDNWRUiW DGMD GH D JUiIQDN QLQFV
+DPLOWRQN|UH GH D keletkezõ körök természetesen lefedik G csúcsait. 7pWHO Ha a G egyszerû összefüggõ gráfnak van olyan k csúcsa, melyek W|UOpVHXWiQNNRPSRQHQVpUHHVLNV]pWDNNRU*QHNQLQFV+DPLOWRQN|UH %L]RQLWiV Indirekt bizonyitunk. Elegendõ arra gondolni, hogy egy N|UNGDUDESRQWMiQDNW|UOpVHXWiQOHJIHOMHEENUpV]UHHVKHWV]pW 7pWHO Ha a G egyszerû osszefüggõ gráfnak van olyan k pontja melyek W|UOpVH XWiQ N NRPSRQHQVUH HVLN V]pW DNNRU *QHN QLQFV +DPLOWRQ~WMD VSHUV]HPpJNHYpVEpYDQ+DPLOWRQN|UH %L]RQLWiV,QGLUHNWEL]RQLWXQNWHJNIHOKRJ*QHND]/KDPLOWRQ ~WMDD]D] /UH LOOHV]NHGLN * PLQGHQ FV~FV SRQWMD %iUPHO ~W LJ SHUV]H / LV N GDUDE SRQWMiQDN D W|UOpVpYHO OHJIHOMHEE N UpV]UH ERPOLN V H] HOOHQWPRQG D WpWHO IHOWHYpVpQHN PHO V]HULQW OHJDOiEE N UpV]UH NHOOHQHERPROQLD HILQLFLy /HJHQ D * JUiIQDN G1 , G2 ,., Gk UHQGUH m1 , m2 ,, mk DG IRN~ IDNWRUDLKD L
KDEiUPHOLMHVHWpQ*LQHNLOOMQHNQLQFVN|]|VpOH LL D G1 , G2 ,., Gk UpV]JUiIRN HJWWYpYH WDUWDOPD]]iN * |VV]HV pOpW DNNRU*H]HQNV]iP~IDNWRUV]RU]DWiQDNPRQGMXN *DNRUROMKiWpVW|UHNHGMPLQWDUpJLHN KRJD]~MDWPHJUDJDGKDVGOHJI{EEV]DEiORGH] OHJHQ.XQJ)XFH/XQM,,N|QY IHMH]HW )HODGDWRN ,JD]ROMD KRJ KD HJ pOW LV WDUWDOPD]y * JUiI PLQGHQ SRQWMiQDN IRNDSiURVDNNRUNLMHO|OKHW{NDJUiIEDQN|U|N~JKRJDJUiIPLQGHQpOH HN|U|NN|]OSRQWRVDQHJEHQV]HUHSHOMHQ %L]RQ WVD EH KRJ KD D] H pO D] |VV]HIJJ{ * JUiIQDN KtGMD DNNRU * QHP WDUWDOPD] RODQ N|UW PHOEHQ D] H pO V]HUHSHO HILQtFLy V]HULQWD*|VV]HIJJ{JUiIQDND]HpOpWKtGQDNPRQGMXNKDHW|UOpVpYHOD *E{ONDSRWWJUiIPiUQHP|VV]HIJJ{ %L]RQ WVDEHKRJKDD * |VV]HIJJ{ JUiIQDN QLQFV RODQ N|UH DPHOD]HpOWWDUWDOPD]]DDNNRUHKtGMD*QHN ,JD]ROMD KRJ KD D * LUiQ WRWW JUiI QHP UHV pV EiUPHO Y
SRQWMiUD δ be (v ) = δ ki (v ) DNNRU*OHIHGKHW{N|U|NNHOROPyGRQKRJEiUPHOpO SRQWRVDQHJN|UEHQV]HUHSHO %L]RQ WVD EH KRJ D WHOMHV JUiI WHWV]{OHJHV LUiQ WiVD PHOOHWW OpWH]LN RODQ Y SRQWMD PHOE{O EiUPHO PiVLN SRQWKR] YH]HW OHJIHOMHEE NHWW{KRVV]~ViJ~~W 0XWDVVD PHJ KRJ EiUPHO * LUiQ WRWW JUiIEDQ D FV~FVRN NLIRNDLQDNLOOEHIRNDLQDN|VV]HJHD]pOHNV]iPiYDOHJH]LNPHJ 7; Bizonyítsa be, hogy bármely hidat nem tartalmazó összefüggõ G JUiI LUiQ WKDWy RO PyGRQ KRJ HU{VHQ |VV]HIJJ{ OHJHQ $ * LUiQ WRWW JUiI HU{VHQ |VV]HIJJ{ KD EiUPHO SRQWMiEyO EiUPHO PiVLN SRQWMiEDYH]HWLUiQ WRWW~W 0XWDVVDPHJKRJLJD]DND]DOiEELiOOtWiVRN L +D*QHPUHVJUiI|VV]HIJJ{pVEiUPHOYSRQWMiUD δ be (v ) = δ ki (v ) DNNRU*QHNYDQLUiQ WRWW(XOHUYRQDOD LL +DD*QHPUHVLUiQ WRWWJUiIQDNYDQLUiQ WRWW(XOHUYRQDOD DNNRU*EiUPHOYSRQWMiUD δ be (v ) = δ ki (v ) pV|VV]HIJJ{
0XWDVVDPHJKRJKDD*JUiIQHPUHVpV|VV]HIJJ{DNNRUpOHL EHMiUKDWyN RO PyGRQ KRJ PLQGHQ pOHQ NpWV]HU PHJQN YpJLJ pV YLVV]D WpUQN D NLLQGXOiVL SRQWED $] pOHN EHMiUiVD ~J LV HOYpJH]KHW{ KRJ PLQGHQpOWPLQGNpWLUiQEDQSRQWRVDQHJV]HUMiUXQNEH /HJHQ D * JUiI RODQ UpV]JUiIMD QHN PHO WDUWDOPD]]D D Y FV~FVSRQWMiW pV * (XOHUJUiI IHOWHVV]N PpJ KRJ YE{O WHWV]{OHJHVHQ EHMiUKDWy 7|U|OMN * pOHLW pV D YLVV]DPDUDGW L]ROiOW SRQWMDLW QHN D PHJPDUDGW JUiIRW MHO|OMH * 0XWDVVD PHJ KRJ pV LV YE{O WHWV]{OHJHVHQ EHMiUKDWy $ * JUiIRW YE{O WHWV]{OHJHVHQ EHMiUKDWyQDN PRQGMXNKDYE{OLQGXOYDpVPLQGLJEHQHPMiUWpOHQKDODGYDV]NVpJNpSSHQ *QHNYDODPHO(XOHUYRQDOiWNDSMXN 0XWDVVDPHJKRJKDSiURVV]iP~XWDW~JNDSFVROXQN|VV]HKRJ NH]G{SRQWMXNXUDYpJSRQWMXNYUHLOOHV]NHGLNpVXLOOYNtYOPiVN|]|V SRQWMXN QLQFV DNNRU PLQG XEyO PLQG YE{O WHWV]{OHJHVHQ
EHMiUKDWy JUiIRW NDSXQN0XWDVVDPHJKRJEiUPHOXEyOLOOYE{OWHWV]{OHJHVHQEHMiUKDWy *JUiIHO{iOOtWKDWyD]HO{EELPyGRQ ,JD]ROMD KRJ D NHWW{QpO W|EE SRQWMXNEyO WHWV]{OHJHVHQ EHMiUKDWy*JUiIRNN|U|N -HO|OMH D * LUiQ WRWW JUiI FV~FVDLW UHQGUH v 0 , v1 , . , v k , v k + 1 , , v n i =n PXWDVVDPHJKRJD ∑ δ ki (vi ) − δ be (vi ) V]iPSiURV i=0 9L]VJiOMD PHJ KRJ D [HV VDNNWiEOiW EH OHKHW H MiUQL HJHWOHQ OyYDO OyXJUiVRNNDO RO PyGRQ KRJ PLQGLJ RODQ PH]{UH OpSQN PHOHQ NRUiEEDQ PpJ QHP MiUWXQN 7HWV]{OHJHVHQ YiODV]WRWW PH]{U{O LQGXOKDWXQN 9pJLJ OHKHW H MiUQL D] [|V VDNNWiEOiW D] HO{EE HPOtWHWW PyGRQ" %L]RQ WVXN EH KRJ KD HJ WiUVDViJQDN EiUPHO WDJMD LVPHU D WiUVDViJEyO OHJDOiEE N HPEHUW DNNRU N|]ON OHOWHWKHW{ HJ NHUHN DV]WDO PHOOp OHJDOiEE N V]HPpO RO PyGRQ KRJ PLQGHQNLQHN D NpW V]RPV]pGMD LVPHU{VH LV HJEHQ )HOWpWHOH]]N KRJ N≥
pV D] LVPHUHWVpJHN N|OFV|Q|VHN %L]RQ WVD EH KRJ KD D] HO{EEL IHODGDWEDQ HPOtWHWW WiUVDViJ I{E{O iOO pV N DNNRU PLQG D KDWDQ OHOWHWKHW{N HJ DV]WDO PHOOp D] HO{]{IHODGDWIHOWpWHOHLQHNPHJIHOHO{HQ /HJHQ D * JUiI FV~FVSRQWMDLQDN D V]iPD Q≥ 0XWDVVD PHJ KRJ ha az n pontú egyszerû gráfban bármely ((n-1)/2)>k pozitív egész k-ra a kQiO QHP QDJREE IRN~ SRQWRN V]iPD NHYHVHEE PLQW N DNNRU D * JUiI |VV]HIJJ{ 19; Mutassa meg ha a egyszerû összefüggõ G gráf K körének bármely e pOpQHNW|UOpVHXWiQD*OHJKRVV]DEE~WMiWNDSMXNDNNRU.+DPLOWRQN|UH* QHN 20; Igazolja, hogy ha egy n csúcspontú egyszerû gráf bármely OHJKRVV]DEE~WMiQDNYpJSRQWMDLIRNV]iPDLQDN|VV]HJHQDNNRUDOHJKRVV]DEE XWDNN|]|WWYDQRODQPHOQHNDYpJSRQWMDLV]RPV]pGRVDN 0XWDVVD PHJ KRJ KD YDODPHO VDNN YHUVHQHQ PLQGHQNL PLQGHQNLYHO HJV]HU PpUN{]|WW pV G|QWHWOHQ QHP YROW DNNRU D YHUVHQ]{N VRUED UHQGH]KHW{N
RO PyGRQ KRJ PLQGHQNL J{]|WW D] XWiQD N|YHWNH]{ HOOHQ %L]RQ WVD EH KRJ D OHJDOiEE SRQW~ WHOMHV JUiIQDN EiUPHO LUiQ WiVDPHOOHWYDQLUiQ WRWW+DPLOWRQ~WMD ,UiQ WVDD]V]|JSRQW~WHOMHVJUiIRWROPyGRQKRJQHOHJHQ DNDSRWWJUiIQDNLUiQ WRWW+DPLOWRQN|UH 24. Rajzoljon olyan 6 pontú 11 élû egyszerû gráfot melynek nincs +DPLOWRQN|UH +HOH]]HQ HO D] RNWDpGHU PLQGHQ ODSMiUD HJHJ D ODSRW SRQWRVDQ IHG{ WHWUDpGHUW 0XWDVVD PHJ KRJ D] tJ OpWUH M|WW WHVW pOKiOy]DWiEyOiOOyJUiIQDNQLQFVHQVHP+DPLOWRQN|UHVHP+DPLOWRQ~WMD +iQ +DPLOWRQN|UH YDQ D WHWUDpGHU LOO KH[DpGHU NRFND JUiIMiQDN 27; Ha egy összefüggô gráf nem egyrétûen járható be (tehát legalább QpJ SiUDWODQ IRN~ FV~FVRW WDUWDOPD] DNNRU OHJDOiEE NpW NO|QE|]{ PLQLPiOLV OHIHGpVH YDQ $ OHKHW{ OHJNHYHVHEE YRQDOEyO iOOy OHIHGpVHLW HJ JUiIQDN PLQLPiOLV OHIHGpVQHN PRQGMXNpV HJ YRQDO KDOPD] OHIHG{ KD D
JUiIPLQGHQpOpWOHJDOiEEHJV]HUWDUWDOPD]]D 6]HSDUiOyKDOPD]RNV]pWYiJyKDOPD]RNYiJiVRNSiURV JUiIRN $ OpSFV{NHW V]HPE{O PiVV]XN PHJ PLYHO KiWUiOYD YDJ ROGDOD]YD LJHQ NpQHOPHWOHQ YROQD -XOLR &RUWi]DU $] |VV]HIJJ{ SDUNRN 8WDVtWiVRN D OpSFV{ PHJPiV]iViKR] .ULWHULRQ R *DNUDQ YDQ DUUD V]NVpJQN KRJ YDODPHO JUiI RODQ UpV]JUiIMiUyO EHV]pOMQN PHOHW G = ( E , ϕ ,V ) E{O YDODPHO pOHLQHN HOKDJiViYDONDSWXQN+DDW|U|OWpOHNKDOPD]iW)MHO|OLDNNRU DYLVV]DPDUDGWUpV]JUiIRWU|YLGHQG = ( E − F , ϕ ,V ) HOMHO|OMN HILQtFLy $ G = ( E , ϕ ,V ) egyszerû összefüggô gráf éleinek F UpV]KDOPD]iW V]HSDUiOy KDOPD]QDN PRQGMXN KD D G = ( E − F , ϕ ,V ) JUiI QHP|VV]HIJJ{ 1HP UHV V]HSDUiOy KDOPD] PLQGLJ OpWH]LN KD OHJDOiEE NpW FV~FVDYROWD]|VV]HIJJ{*JUiIQDNPLYHOEiUPHOJUiIHVHWpQ * |VV]HV pOHLQHN D KDOPD]D WULYLiOLVDQ V]HSDUiOy KDOPD] $ G = ( E , ϕ ,V )
JUiIFV~FVDL9KDOPD]iQDNQHPUHVUpV]KDOPD]DL:pV: OHJHQHNDGRWWDN:pV: UpV]KDOPD]RNUDWHOMHVHGMHQPpJKRJ : 9: $]D]:: GLV]MXQNWDNpVXQLyMXN9 HILQtFLy $ G = ( E , ϕ ,V ) egyszerû összefüggô gráf éleinek F UpV]KDOPD]iW:: UHYRQDWNR]yODJV]pWYiJyKDOPD]QDNPRQGMXNKD )HOHPHL:SRQWMDLWN|W|WWpN|VV]H: SRQWMDLYDO 7pWHO $ G = ( E , ϕ ,V ) egyszerû gráf, akkor és csak akkor |VV]HIJJ{KD9WQHPOHKHWIHOERQWDQL:: QHPUHVGLV]MXQNW UpV]KDOPD]RN XQLyMiUD RO PyGRQ KRJ ha ∀e ∈ E é s ϕ (e) = (v1 , v2 ) ⇒ (v1 , v2 ∈W ) vagy (v1 , v2 ∈W ) %L]RQ WiV$WpWHOXWROVyVRUiQDNDIRUPXOiMiEDQV]HUHSO{ YDJ ~Q NL]iUy YDJ $ WpWHO XWROVy VRUD YpJO LV D]W PRQGMD KRJ QLQFV RODQ pO PHO : YDODPHO SRQWMiW N|WQp |VV]H : SRQWMiYDO 0iV V]yYDO KD OpWH]QHN D WpWHOEHQ HPOtWHWW WXODMGRQViJRNNDO UHQGHONH]{ : : KDOPD]RN DNNRU * QHP
|VV]HIJJ{ +D XJDQLV * |VV]HIJJ{ YROQD DNNRU OpWH]QH :E{O LQGXOy: EHQYpJ]{G{~W6D]~WQDNOHJDOiEEHJRODQHpOH DPHOQHNHJLNYpJSRQWMD:EHPiVLN: EHHVQH )RUGtWYD KD * QHP |VV]HIJJ{ DNNRU OHJDOiEE NpW NRPSRQHQVHYDQ/HJHQD]HJLN G1 = ( E1 , ϕ1 ,V1 ) KD: 9QHNpV: 9 9 QHNYiODV]WMXNDNNRUOiWKDWyDNRPSRQHQVGHILQtFLyMDPLDWW QLQFVRODQHpOPHO:WN|WQp|VV]H: YHO HILQtFLy$*JUiI)V]HSDUiOyKDOPD]iWYiJiVQDNQHYH]]N KD ) QHN QLQFV RODQ YDOyGL ) UpV]KDOPD]D DPHO V]LQWpQ * V]HSDUiOyKDOPD]DYROQD 1LOYiQ D]W LV PRQGKDWQiQN KRJ D YiJiV PLQLPiOLV V]HSDUiOiV +D YDODPHO ) V]HSDUiOy KDOPD] D * JUiIRW YDJ W|EE NRPSRQHQVUH ERQWRWWD IHO DNNRU ) QHP OHKHW YiJiV PHUW EiUPHO H )EpOL pOUH )^H` V]HSDUiOy KDOPD] 8JDQLV D] H OHJIHOMHEENpWNRPSRQHQVWN|W|VV]H 9HJNpV]UHD]WLVKRJHJYiJiVV]NVpJNpSSHQV]pWYiJy KDOPD] LV GH IRUGtWYD QHP LJD] 9DQ RODQ * JUiI
pV RODQ ) V]pWYiJyKDOPD]D*QHNPHOQHPYiJiV0XWDVVRQOHJDOiEEHJHW $IHQWLHNV]HULQWLJD]D]DOiEELiOOtWiV 7pWHO $ * |VV]HIJJ{ JUiI EiUPHO IHV]tW{ IiMiQDN YDQ OHJDOiEEHJN|]|VpOH*EiUPHOV]pWYiJyKDOPD]iYDO 0HJMHJ]pV 9HJN pV]UH D * JUiI 7 IHV]tW{ IiMD RODQ PLQLPiOLVDQ |VV]HIJJ{ UpV]JUiIMD *QHN PHO FV~FVDLW |VV]HN|WL$*JUiIQDN)V]pWYiJyKDOPD]DSHGLJRODQPLQLPiOLV KDOPD]DpOHNQHNPHO*EL]RQRVFV~FVDLWHOYiODV]WMDHJPiVWyO Emlékezzünk arra is , hogy a G egyszerû összefüggô gráf T IHV]tW{IiMDRODQPD[LPiOLVDQ|VV]HIJJ{UpV]JUiIMD*QHNPHO QHPWDUWDOPD]N|UW 7pWHO &DOH $] Q V]|JSRQW~ .Q WHOMHV JUiI NO|QE|]{ IHV]tW{IiLQDNDV]iPDQQ $ WpWHO N|]LVPHUW EL]RQ WiVDL NLVVp NRPSOLNiOWDEEDN D] iWODJQiOD]pUWD]WLWWPHOO{]]N .UXVNDODOJRULWPXV Legyen adott egy G egyszerû összefüggô JUiI pV OHJHQHN D] pOHL V~OR]RWWDN $ G = ( E , ϕ ,V ) JUiI pOHL V~OR]RWWDN KD * EiUPHO H
pOpKH] KR]]i YDQ UHQGHOYH HJ Z YDOyVV]iP6RNIHODGDWQiODV~ONpQWV]HUHSO{YDOyVV]iPRNQHP QHJDWtYDN $ .UXVNDODOJRULWPXV YpJO LV DUUD YDOy KRJ PHJKDWiUR]]D HJ V~OR]RWW JUiI PLQLPiOLV IHV]tW{ IiMiW * YDODPHO IHV]tW{ IiMiW PLQLPiOLVQDN PRQGMXN KD D] ) pOHLKH] UHQGHOWV~ORN|VV]HJHPLQLPiOLVD]D]*EiUPHOPiV) IHV]tW{ IiMD HVHWpQ D] ) pOHLKH] WDUWR]y V~ORN |VV]HJH QDJREE YDJ HJHQO{ PLQW D] ) pOHLKH] WDUWR]y V~ORN |VV]HJH )RUPXOiYDO OHtUYD D] HO{EELW ∑ w(ei ) ≤ ∑ w(ei ) WHOMHVO * EiUPHO ) IHV]tW{ ∀ei ∈E ( F ) ∀ei ∈E ( F ) IiMiUD DKRO ( ) LOO ( ) MHO|OL ) LOO ) pOHLQHN D KDOPD]iW $ .UXVNDO DOJRULWPXV OpQHJH U|YLGHQ D N|YHWNH]{ 9iODVV]XN HO{V]|U * pOHL N|]O ( E{O D PLQLPiOLV V~O~W HW $ PiVRGLN OpSpVEHQ ( ( * ^H`E{O YiODVV]XN D HW JHOYH DUUD KRJ D] H H pOHN QH DONRVVDQDN *EHQ N|UW 6 iOWDOiEDQ D] DOJRULWPXV NLN OpSpVH
DEEyO iOO KRJ D] E k = E (G ) − {e1 , e2 ,., ek −1} pO KDOPD]EyO YiODVV]XQN HJ RODQ PLQLPiOLV V~O~HNWPHODPiUNLYiODV]WRWW e1 , e2 ,., ek −1 pOHNNHOHJWWQHP DONRW N|UW *EHQ +D D PRQGRWW WXODMGRQViJJDO UHQGHONH]{ H pO QHP OpWH]LN DNNRU D] DOJRULWPXV YpJHW pUW $ NRQVWUXNFLyEyO QLOYiQYDOy KRJ D] HUHGPpQO NDSRWW ) ID JUiI IHV]tW{ IiMD *QHN ) PLQLPDOLWiViW LQGLUHNW ~WRQ PXWDVVXN PHJ 7HJN IHO KRJD]) IHV]tW{IDpOHLKH]UHQGHOWV~ORN|VV]HJHNLVHEEPLQW D])KH]UHQGHOWHN|VV]HJHpV)QHNpV) QHND]pOHLLVV~OXN QDJViJDL V]HULQW VRUED UHQGH]HWWHN D]D] w(e1 ) ≤ w(e2 ) ≤. ≤ w(en −1 ) LOO w(e1 ) ≤ w(e2 ) ≤. ≤ w(en − 1 ) (] D]W MHOHQWL KRJ OHJDOiEE HJ pON NO|QE|]LN /HJHQ D] D VRUUHQGEHQ D] HOV{ SO HM H] D]W MHOHQWHQp KRJ QHP D PLQLPiOLV V~O~ pOW YiODV]WRWWXN D MLN OpSpVEHQVH]HOOHQWPRQGiV 7pWHO (J * |VV]HIJJ{ JUiIEDQ EiUPHO ) V]pWYiJy KDOPD]
EiUPHO3]iUWYRQDOQDNSiURVVRNpOpWWDUWDOPD]]D %L]RQ WiV /HJHQ DGRWW D * JUiI FV~FVDLQDN KDOPD]D NpW QHPUHV:: GLV]MXQNWUpV]KDOPD]DLQDNXQLyMD6D])V]pWYiJy KDOPD]D *QHN :: UH YRQDWNR]yODJ pV OHJHQ DGRWW HJ 3 ]iUW pOVRUR]DWD *QHN ,QGXOMXQN HO YDODPHO 3EHOL FV~FVSRQWEyO PHO HJEHQ :QHN LV HOHPH +D 3 YDODPHO H pOH iWPHJ : EH DNNRU D ]iUWViJ PLDWW RODQ H pO LV OHV] DPHOLNNHO YLVV]DMXWXQN:EH+DDWRYiEELEDUDQJROiVXQNVRUiQ~MyODJ: EH EyNOiV]QiQN H pOHQ D ]iUWViJ PLDWW LVPpW :EH NHOO WpUQQN YDODPHOH pOOHOpVtJWRYiEEDPtJYpJLJQHPSRURV]NiOXQND 3 ]iUW YRQDO YDODPHQQL pOpQ $] ) KDOPD] V]pWYiJy YROWD PLDWW D]HH HH HNHN pOHNHOHPHL)QHNLJD]WHKiWDWpWHO 1pKiQ ROGDOODO HO{EE PiU EHV]pOWQN HJHJ pUGHNHVHEE JUiIUyOPLQWSpOGiXOD]QFV~FVSRQW~WHOMHVJUiIUyO$V]pWYiJy KDOPD]NDSFViQPHJHPOtWMNDNSDUWLFLRQiOKDWyJUiIRNDW HILQtFLy $ G = ( E , ϕ ,V )
JUiIRW N SDUWLFLRQiOKDWyQDN PRQGMXN KD PHJDGKDWy 9QHN RODQ 9 = 9 ∪ 9 ∪∪9 N RV]WiOR]iVD DKRO D 99 9 N KDOPD]RN HJLNH VHP UHV pV QLQFV RODQ pO PHOQHN PLQGNpWYpJSRQWMDXJDQD]RQ9LKDOPD]EDQYROQD 3iURVJUiIRN $JDNRUODWEDQpVD]HOPpOHWEHQLVNLWQWHWHWWV]HUHSHYDQ DN HVHWQHNPiVQpYHQDSiURVJUiIRNQDN HILQtFy $ G = ( E , ϕ ,V ) W SiURV JUiIQDN PRQGMXN KD 9 IHOERPOLN NpW QHP UHV GLV]MXQNW UpV]KDOPD]iUD 9 = 9 ∪ 9 DKRO QLQFVRODQH pO PHOUH D] WHOMHVHGQH KRJ ϕ (e) = (v1 , v2 ) pV v1 , v2 ∈Vi DKROL 3iURV JUiIUD SpOGD OHKHW HJ HVWpW YpJLJ WiQFROy IDUVDQJL WiUVDViJ DKRO D FV~FVRN D] HPEHUHN pV NpW FV~FV |VV]H YDQ N|WYH KD D] DGRWW HPEHUHN D] HVWH VRUiQ WiQFROWDN HJPiVVDO 7HJJN IHO KRJ FVDN SiURV WiQFRNDW WiQFROWDN pV EiUPHOLN IpUIL FVDN Q{YHO pV EiUPHOLN Q{ FVDN IpUILYDO WiQFROW $ WiUVDViJ K|OJ WDJMDLW MHO|OYH D FV~FVRN HJLN
V D WiUVDViJ IpUILWDJMDLWMHO|OYHDFV~FVRNPiVLNKDOPD]iQDNQLOYiQSiURV JUiIRWNDSWXQN 7pWHO +D D * SiURV JUiI DNNRU EiUPHO . N|UpQHN D] pOHLQHNDV]iPDSiURV %L]RQ WiV -iUMXN YpJLJ . pOHLW PRQGMXN YDODPHO 9E{O YDOy9SRQWMiWyONH]GYH$]HpOYSRQWEDYLV]PHO9HOHPH PLYHO 9EpOL SRQW QLQFV |VV]HN|WYH 9EpOL SRQWWDO YE{O 9 EpOL SRQWED YLV] H PLYHO 9EpOL SRQWRNDW QHP N|W |VV]H pO /iWKDWy KRJ D N|U pOHLW HJPiVXWiQ EHMiUYD YiOWDNR]YD PHJQN 9E{O 9EH LOO 9E{O 9EH .|UU{O OpYpQ V]y KD 9E{O UDMWROWXQN DNNRU RGD LV NHOO YLVV]D IXWQXQN V H]pUW D] pOHN V]iPDYDOyEDQSiURV HILQtFLy $ * SiURV JUiI pOHLQHN 0 UpV]KDOPD]iW SiURVtWiVQDNPRQGMXNKD0EiUPHOpOpQHNQLQFVN|]|VYpJSRQWMD 0iV V]yYDO 0 HOHPHL SiURVtWMiN HJPiVKR] UHQGHOLN D * SiURV JUiI FV~FVSRQWMDLW 0W WHOMHVQHN PRQGMXN KD 0 OHIHGL * FV~FVDLW V PD[LPiOLVQDN KD QHP OpWH]LN 0QpO QDJREE
HOHP V]iP~0 SiURVtWiVD*QHN $ * JUiI pOHLQHN 0 KDOPD]iW IJJHWOHQQHN PRQGMXN KD 0 EiUPHO NpW pOpQHN QLQFV N|]|V YpJSRQWMD $] 0 IJJHWOHQ pO KDOPD]W WHOMHVQHN PRQGMXN KD 0 YpJSRQWMDL N|]|WW * PLQGHQ SRQWMDV]HUHSHO$]0HOHPHLNpWD]RQRVV]iPRVViJ~UpV]KDOPD]UD ERQWMiN*SRQWMDLWH]pUWQLOYiQLJD]DN|YHWNH]{iOOtWiV 7pWHO +D D * JUiIEDQ YDQ IJJHWOHQ WHOMHV 0 pO KDOPD] DNNRU*FV~FVDLQDNV]iPDSiURV $] 0 KDOPD]W PD[LPiOLVQDN PRQGMXN KD * pOHLQHN QLQFV RODQ0 UpV]KDOPD]DPHOIJJHWOHQpVW|EEHOHPHYDQPLQW0 QHN -HOH *pIPD[ $ JUiI FV~FVSRQWMDLQDN YDODPHO 6 UpV]KDOPD]iW OHIRJy OHV]~Uy SRQWKDOPD]QDN PRQGMXN KD * EiUPHO pOpQHN OHJDOiEE D] HJLN YpJSRQWMD 6EHQ YDQ -HOH *OSPLQ 7pWHO .{QLJ pQHV %iUPHO SiURV JUiI IJJHWOHQ pOHLQHN PD[LPiOLV V]iPD HJHQO{ D] pOHNHW OHIRJy SRQWRN PLQLPiOLVV]iPiYDO %L]RQ WiV $] KRJ D OHIRJy SRQWRN PLQLPiOLV V]iPD QDJREE
HJHQO{ *pIPD[≤OSPLQ PLQW D PD[LPiOLVDQ IJJHWOHQ pOHN V]iPDDGHILQtFLyEyON|]YHWOHQODGyGLN/HJHQD*JUiISiURV D]D]DGRWW*FV~FVDLQDNHJV = V1 U V2 SDUWtFLyMD7HJNIHOKRJ 9 pV 9 SRQWRNDW NpW HJPiVVDO SiUKX]DPRV HJHQHVHQ YHWWN IHO 1HYH]]N 9 SRQWMDLW IHOV{ SRQWRNQDN pV 9 SRQWMDLW DOVy SRQWRNQDN .{QLJ pQHV pV (JHUYiU -HQ{ D] DV pYHNEHQ NLIHMOHV]WHWWHN HJ PyGV]HU D PD[LPiOLV IJJHWOHQ pOHN PHJKDWiUR]iViUD PHOHW UyOXN PDJDUPyGV]HUQHN LV V]RNWDN QHYH]QL(PyGV]HUUHOOHKHWD]HOOHQNH]{LUiQ~HJHQO{WOHQVpJHW *pIPD[≥OSPLQ EL]RQ WDQL 0D[LPiOLV V]iP~ pOW WDUWDOPD]y SiURVtWiV NHUHVpVH PDJDU PyGV]HUUHO7HJNIHOKRJDSiURVJUiIXQNFV~FVDL$LOO%QHP UHV GLV]MXQNW KDOPD]RNQDN D] HOHPHL pV $EyO $ED LOO %E{O %EH QHP IXW pO /HJHQ DGRWW *QHN HJ 0 SiURVtWiVD 0 OHKHW UHV LV *QHN YDODPHO HHHHHN ~WMiW DOWHUQiOy
~WQDNIRJMXNQHYH]QLKDD]pOHNIHOYiOWYDHOHPHL0QHNLOOHWYH $ $ $ $ % % % % ( * 0 QHN SpOGiXO H∈0 H∉0H∈0 H∉ 0-HO|OMHPRVWD*SiURVJUiIFV~FVSRQWMDLQDNDKDOPD]iW$ ∪% (POpNH]WHW{O PHJMHJH]]N KRJ $ LOO % QHP UHV pV GLV]MXQNW WRYiEEi EiUPHO pO FVDN $EyO YDOy SRQWRW N|WKHW |VV]H %EHOL SRQWWDO YDJ PRQGKDWMXN IRUGtWYD LV KRJ FVDN %EHOL SRQW YDQ |VV]HN|WYH $EpOL SRQWWDO $ V]|YHJEH KHOH]HWWiEUiQYDVWDJYRQDOODOMHO|OWN0pOHLW$%MHO|OL$ LOO % 0 iOWDO OH QHP IHGHWW SRQWMDLW +D WDOiOXQN RODQ DOWHUQiOy HHHHHN XWDW PHO %E{O LQGXO pV $EHQ YpJ]{GLN DNNRU D] HHHHHN út M-ben lévô páros indexû éleit cseréljük ki a nem M-ben lévô páratlan indexûekre. Az így QHUW ~M 0 SiURVtWiVD *QHN pV 0 QHN HJJHO W|EE HOHPH YDQ PLQW0QHN$N|YHWNH]{OpSpVEHQPHJKDWiUR]]XND]0 K|]WDUWR]y $ % KDOPD]RNDW pV NHUHVVQN
RODQ DOWHUQiOy XWDW PHO % E{O LQGXO pV $-ben végzôdik. Az alternáló út páros indexû éleit M-bôl törölve, s M-höz csatolva az út páratlan indexû pOHLW D *QHN HJ 0 SiURVtWiViW NDSMXN PHOQHN HJJHO W|EE HOHPH YDQ PLQW 0 QHN $] DOJRULWPXVW QLOYiQ DGGLJ OHKHW IROWDWQLDPtJWDOiOXQNDIHQWHPOtWHWWWtSXV~DOWHUQiOyXWDNDW 0HJOHKHW PXWDWQL KRJ PLNRU PiU QHP OHOQN DONDOPDV DOWHUQiOy XWDW D] XWROVy OpSpVEHQ NDSRWW 0 SiURVtWiV Q SiURVtWiV PD[LPiOLV HILQtFLy: Ha a G egyszerû gráf bármely csúcsának a foka k, DNNRU*WNUHJXOiULVQDNPRQGMXN $ .HGYHV 2OYDVy KD NLFVL N pUWpNHNUH OHUDM]ROMD D N V]|JSRQW~ WHOMHV JUiIRW pV]UH IRJMD YHQQL KRJ D]RN N regulárisak. S valószínûleg azt is belátja, hogy ha valamely IiQDN NHWW{QpO W|EE FV~FVD YDQ DNNRU D] QHP OHKHW UHJXOiULV VHPPLOHQNUDVHP HILQtFLy$*JUiIRWNV]RURVDQ|VV]HIJJ{QHNPRQGMXNKD EiUPHO NpW NO|QE|]{ YY FV~FVD
N GDUDE RODQ ~WWDO N|WKHW{ |VV]HPHOHNQHNDYY NtYOPiVN|]|VFV~FVSRQWMXNQLQFVHQ 1HP QHKp] pV]UHYHQQL KRJ D N V]|JSRQW~ WHOMHV JUiI (k − 1) V]HUHVHQ |VV]HIJJ{ V D]W VHP KRJ KD YDODPHO * JUiI QHP WDUWDOPD]KLGDWDNNRUD]OHJDOiEENpWV]HUHVHQ|VV]HIJJ{ 6]iOOtWiVL SUREOpPiN HOHNWURPRV KiOy]DWRN HOHP]pVpQpO általában gyakran szükségesek a következõ fogalmak illetve WpWHOHN HILQtFLy $ * JUiI XY QHP V]RPV]pGRV FV~FVDLW OHIRJy SRQWKDOPD]*FV~FVDLQDNRODQUpV]KDOPD]DDPHOEiUPHOXWpV v-t összekötõ l útnak tartalmazza legalább egy belsõ u-tól v-tõl különbözõ pontját. Jele: uv-LP 1LOYiQD]RNDOHIRJySRQWKDOPD]RND]pUGHNHVHNPHOHNQHN a lehetõ legkevesebb elemük van. HILQtFLy $ * JUiI SRQWIJJHWOHQ XY~WMDLQDN D KDOPD]iQ olyan u kezdõpontú ill. v végpontú utak halmazát értjük, DPHOHNQHN H NpW FV~FV SRQWRQ NtYO PiV N|]|V SRQWMXN QLQFVHQ -HOHXY3)8
$SRQWIJJHWOHQXWDNQDNDPD[LPiOLVV]iPDD]DPLiOWDOiEDQ pUGHNHV 7pWHO+DD*JUiIEDQXpVYQHPV]RPV]pGRVFV~FVRNDNNRU D SRQWIJJHWOHQ XWDN PD[LPiOLV V]iPD NLVHEE YDJ OHJIHOMHEE egyenlõ az u,v csúcsokat legkevesebb ponttal lefogó ponthalmaz HOHPHLQHNDV]iPD)RUPXOiYDOtUYD PD[ XY − 3)8 ≤ PLQ XY − / 3 $ WpWHO pV D IRJDOPDN MREE PHJpUWpVH YpJHWW DMiQOMXN D Kedves Olvasó figyelmébe a következõ példát. A kékek 2 csapata XEDQ LOO YEHQ IRJODO KHOHW $ SLURVRN IHODGDWD KRJ PHJDNDGiOR]]iN D NpNHN pULQWNH]pVpW 1LOYiQ PLQGHQ ÄIJJHWOHQ ~WUD NL NHOO NOGHQLN HJHJ HJVpJHW DPHOHN OHIRJMiN D] összes szóba jöhetõ útat. 7pWHO+DD*JUiIEDQXLOOYQHPV]RPV]pGRVDNNRUD]XW v-vel összekötõ pontfüggetlen utak maximális száma megegyezik az XYW OHJNHYHVHEE SRQWWDO OHIRJy SRQWKDOPD] HOHPHLQHN D V]iPiYDO-HOEHQ PD[ XY − 3)8 ≡ PLQ XY − / 3
(]WDWpWHOWV]RNiVRVSRQW0HQJHUWpWHOQHNPRQGDQLPLYHOD tételt elõször K. Menger publikálta 1927-ben HILQtFLy$]XYXWDNDWOHIRJypOKDOPD]RQD*JUiIpOHLQHN RODQ(¶UpV]KDOPD]iWpUWMNDPHOWDUWDOPD]]DEiUPHOXY~WQDN OHJDOiEEHJpOpW-HOHXY/e HILQtFLy eOIJJHWOHQ XY XWDN KDOPD]iQ D * JUiI RODQ útjait értjük, amelyek közül bármely kettõnek nincs közös éle (közös csúcsuk azonban lehet olyan is, mely az u-tól ill. v-tõl is különbözõ). Jele: uv-ÉFU 7pWHOBármely G gráfban az u-t v-vel összekötõ élfüggetlen utak maximális száma kisebb vagy egyenlõ, mint az uv utakat OHIRJy EiUPHO pOKDOPD] HOHPHLQHN D V]iPD .LFVLW U|YLGHEEHQ MHO|OYH PD[ XY − ()8 ≤ PLQ XY − / ( 7pWHO pO0HQJHUWpWHO Bármely G gráfban az uv-t összekötõ élfüggetlen utak maximális száma egyenlõ az uv utakat lefogó PLQLPiOLVDQ OHIRJy pOHNQHN D V]iPiYDO .pSOHWWHO tUYD PD[ XY − ()8 ≡ PLQ XY − / ( )HODGDWRN %L]RQ WVD
EH KRJ EiUPHO YW{O ZLJ KDODGy pO VRUR]DW WDUWDOPD]YW{OZLJKDODGyXWDW %L]RQ WVDEHKRJKDXpVY |VV]HN|WKHW{N YRQDOODO YDODPLQW Y pVZLVDNNRUXpVZLV|VV]HN|WKHW{HJYRQDOODO %L]RQ WVD EH KRJ PLQGHQ XW pV YW |VV]HN|W{ YRQDO PHO QHP ~W IHOERQWKDWy HJ XW YYHO |VV]HN|W{ ~WUD pV HJ YDJ W|EE N|UUH ,O PyGRQ FVXSiQ D] XWDN PLQLPiOLVDN DEEDQ D] pUWHOHPEHQ KRJ pOHLNQHN HJHWOHQYDOyGLUpV]KDOPD]DVHPN|WL|VV]HYpJSRQWMDLNDW %L]RQ WVDEHKRJHJ]iUWLUiQ WRWWYRQDO PHO QHP N|U NpW YDJW|EELUiQ WRWWN|UUHERQWKDWy 0XWDVVDPHJKRJXEyOYEHYLY{LUiQ WRWW YRQDO PHO QHP ~W IHOERQWKDWy XEyO YEH YLY{ LUiQ WRWW ~WUD pV HJ YDJ W|EE LUiQ WRWW N|UUH ,JD]ROMD KRJ KD WDUWDOPD] YE{O ZEH LOO ZE{O YEH YH]HW{ LUiQ WRWWYRQDODWDNNRUWDUWDOPD]]iUWLUiQ WRWWYRQDODW LUiQ WRWW vonalban az élek nem ismétlõdhetnek). Adjon olyan példát a fenti IHOWpWHOHN PHOOHW PLNRU
LV QHP OpWH]LN RODQ ]iUW LUiQ WRWW YRQDO PHO YUHpVZUHLVLOOHV]NHGLN ,JD]ROMD KRJ KD D LUiQ WRWW JUiI PLQGHQ SRQWMiQDN EHIRND SR]LWtY DNNRU V]NVpJNpSSHQ FLNOLNXV JUiI $ * JUiI FLNOLNXV KD WDUWDOPD]N|UW 0XWDVVD PHJ KRJ HJ YpJHV LUiQ WRWW JUiI DNNRU pV FVDN DNNRUHU{VHQ|VV]HIJJ{KDOpWH]LNRODQ]iUWLUiQ WRWWpOVRUR]DWDPHO PLQGHQ pOpW OHJDOiEE HJV]HU WDUWDOPD]]D HU{VHQ |VV]HIJJ{ KD EiUPHOYFV~FViEyOYH]HWLUiQ WRWW~WEiUPHOPiVLNZFV~FViED %L]RQ WVD EH KRJ D (ϕ9 LUiQ WRWW JUiI DNNRU pV FVDN DNNRU HU{VHQ |VV]HIJJ{ KD D FV~FVRN KDOPD]iQDN EiUPHO :9: SDUWtFLyMiUD D KH] WDUWR]y LUiQ WiV QpONOL JUiI PHJIHOHO{ V]pWYiJy KDOPD]D WDUWDOPD] OHJDOiEE HJ RODQ pOW PHO :E{O 9EH pV HJ RODW PHO9E{O:EHPHJ %L]RQ WVD EH KRJ KD D LUiQ WRWW JUiIEDQ D K1 , K2 ,., Kn LUiQ WRWW N|U|N RODQ VRUR]DWD PHOHN N|]O EiUPHO NpW
HJPiVXWiQ N|YHWNH]{QHN YDQ OHJDOiEE HJ N|]|V FV~FVD DNNRU H N|U|N iOWDO PHJKDWiUR]RWWUpV]JUiIMDQHNHU{VHQ|VV]HIJJ{ 11; Bizonyítsa be, hogy ha valamely egyszerû gráf nem teljes, akkor OHJDOiEE HJIpOH PyGRQ OHKHW ~J LUiQ WDQL KRJ D] HUHGPpQO NDSRWW LUiQ WRWWJUiIQHWDUWDOPD]]RQIHV]tW{IiW (J JUiI OHKHW V]LPPHWULNXV pV WUDQ]LWtY LV XJDQDNNRU QHP UHIOH[tY$GMRQHUUHSpOGiW0LMHOOHP]LD]HO{EELWtSXV~JUiIRNDW" .RQVWUXiOMD PHJ D]RNDW D * JUiIRNDW PHOHN FV~FVDL D HJpV] V]iPRN pV X pV Y pOOHO YDQ |VV]H N|WYH KD XY pVX≡YPRG 14; Ha egy összefüggô G gráf nem egyrétûen bejárható ( tehát WDUWDOPD] OHJDOiEE QpJ SiUDWODQ IRN~ FV~FVRW DNNRU EL]RQ WVD EH KRJ OHJDOiEENpWNO|QE|]{PLQLPiOLVOHIHGpVHYDQ +D D * |VV]HIJJ{ JUiI PLQLPiOLV OHIHGpVH N GDUDE YRQDODW WDUWDOPD] DKRO N! DNNRU * HJHWOHQ pOpQHN HOKDJiViYDO RODQ JUiIRW
NDSXQNPHOQHNPLQLPiOLVOHIHGpVHLNNYDJNYRQDODWWDUWDOPD]QDN %L]RQ WVD EH KRJ HJ |VV]HIJJ{ (XOHUJUiI PLQGHQ HJHV V]pWYiJy KDOPD]D OHJDOiEE NpW pOW WDUWDOPD] WRYiEEi KRJ PLQGLJ SiURV V]iP~pOE{OiOO (XOHUIRUPXODVtNEHOLJUiIRNV]DEiORVWHVWHN )HOWpWHOH]]N KRJ D .HGYHV 2OYDVyQDN LQWLXWtYH HOpJ SRQWRV pV NRUUHNW IRJDOPD YDQ D VtN J|UEpNU{O EiU NRUUHNW pV NHOO{HQ iOWDOiQRV J|UEH IRJDORPPDO NpV{EE GLIIHUHQFLiOJHRPHWULDL WDQXOPiQDLNEDQ találkozni fognak. Megemlítjük például, hogy egy egyszerû zárt JordanJ|UEH NpW GLV]MXQNW WDUWRPiQUD ERQWMD D VtNRW 3pOGiXO HJ RULJy N|]pSSRQW~ U VXJDU~ . N|U 3 U VLQ W U FRV W HJ D] RULJyW WDUWDOPD]y N|UODSUD pV D] D]W N|UO|OHO{ YpJWHOHQ WDUWRPiQUD ERQWMD D VtNRW (J * JUiIRW VtNED UDM]ROKDWyQDN PRQGXQN KD D JUiI pOHLW OHKHW UHDOL]iOQL D VtNEDQ RODQ YRQDODNNDO KRJ EiUPHO NpW pOQHN FVDN D * JUiI
FV~FVSRQWMDLEDQOpY{YpJSRQWMDLOHKHWQHNN|]|VHN 7pWHO %iUPHO * YpJHV JUiI UHDOL]iOKDWy D KiURP GLPHQ]LyV HXNOLGHV]LWpUEHQ %L]RQ WiV/HJHQDGRWWD G ( E , ϕ ,V ) JUiI9HJQNIHODWpUEHQHJH HJHQHVWD]HJHQHVHQ n = V SiURQNpQWNO|QE|]{ Vi (i = 1,2,., n) SRQWRWpVD] H HJHQHVUH LOOHV]NHG{ q = E SiURQNpQW NO|QE|]{ Si (i = 1,2,., q ) VtNRW pV PLQGHJLN VtNEDQ Pi (i = 1,2,., q ) SRQWRW RODW PHO QHP LOOHV]NHGLN HUH +D ( ) D]HWpODYLpVDYMSRQWRNDWN|W|WWH|VV]HD]D] ϕ (et ) = vi , v j DNNRUN|VVN |VV]H D 9L SRQWRW 3WYHO HJ X HJHQHV V]DNDVV]DO V 3WW LV 9MYHO N|VVH |VV]H HJ Z V]DNDV] $] H pOW D] HO{EE PHJNRQVWUXiOW 9LE{O 9MEH PHQ{ W|U|WW YRQDO IRJMD UHSUH]HQWiOQL $ NRQVWUXNFLy DODSMiQ QLOYiQYDOy KRJ D] pOHNQHN PHJIHOHO{ W|U|WWYRQDODN FVDN D JUiI FV~FVDLQDN NLMHO|OW 9L SRQWRNEDQWDOiONR]KDWQDN A következôkben olyan egyszerû összefüggô síkbeli gráfokkal IRJODONR]XQN
PHOHN ~Q VRNV]|JKiOyW DONRWQDN 6RNV]|JKiOyW DONRWQDN DEEDQ D] pUWHOHPEHQ KRJ IHOERQWKDWyN RODQ PLQLPiOLV N|U|NUH PHOHN D EHOVHMNEHQ PiU QHP WDUWDOPD]QDN D JUiIQDN VHPPLOHQ SRQWMiW H N|U|NHW IRJMXN WDUWRPiQRNQDN QHYH]QL YDJ RUV]iJRNQDN $ JUiI PLQGHQ FV~FViQDN IRND QDJREE PLQW NHWW{ EiUPHO pO SRQWRVDQ NpW WDUWRPiQW KDWiURO +D $IULND WpUNpSpW YHVV]N V]HPJUH V QHP iEUi]ROQiQN 0DGDJDV]NiUW pV /HVRWKRW D pODIULNDL .|]WiUVDViJ EHOVHMpEHQ WRYiEEi D] RUV]iJKDWiURNDW pV D WHQJHUSDUWRNDW GHILQLiOMXN pOHNQHN $ JUiI FV~FVSRQWMDLQDN WHNLQWMN D]RQ SRQWRNDW DKRO OHJDOiEE KiURP pO WDOiONR]LN DNNRU HJ VRNV]|JKiOyW NDSXQN (JHJ RUV]iJQDN PHJIHOHO{ PLQLPiOLV DEEDQ PLQLPiOLV N|UW D] pUWHOHPEHQ KRJ EHOVHMH QHP WDUWDOPD]]D D JUiI VHPHOLN FV~FVSRQWMiW WDUWRPiQQDN YDJ QHYH]]QN $] RUV]iJQDN $IULNiW N|UOYHY{ WDUWRPiQW YpJWHOHQ WDUWRPiQQDN QHYH]]N
7pUNpSpV]HWEHQJDNUDQKDV]QiOWHOMiUiVDV]WHUHRJUDILNXVSURMHNFLy PLNRULVHJGJ|PEpVHJSVtNSRQWMDL N|]|WWOpWHVtWQNHJPHJIHOHOWHWpVW ( 7pWHOH]]N IHO KRJ D G J|PEQN HJ SRQWEDQ pULQWL D VtNRW $ SRQW iWHOOHQHV SRQWMD OHJHQ ( JRQGROMRQ D GpOL LOO D] pV]DNL VDUNUD $ VtN YDODPHO 3 SRQWMiQDN J|PEL PHJIHOHO{MpW 3 W PHJNDSMXN KD D 3W (YHO |VV]HN|W{ HJHQHVQHN YHVV]N D * J|PEEHO D PHWV]pVSRQWMiW $ V]WHUHRJUDILNXV SURMHNFLyYDO D VtNRQ iEUi]ROKDWXQN HJ J|PEUH UDM]ROW JUiIRW pV IRUGtWYD HJVtNEDUDM]ROWJUiIRWL]RPRUIPyGRQiEUi]ROKDWXQNDJ|PE|Q 3 2 3 6 /HJHQ D G ( E , ϕ ,V ) JUiI HJ VRNV]|JJUiI pOHLQHN D V]iPiW T FV~FVDLQDNV]iPiWQpVWDUWRPiQDLQDNV]iPiWMHO|OMHW 7pWHO (XOHUIRUPXOD +D*VRNV]|JJUiIDNNRU () QTW $IHQWLWpWHOWV]RNiV(XOHUIpOHSROLpGHUWpWHOQHNLVQHYH]QLPLYHO D KiURPGLPHQ]LyV WpU SROLpGHUHLQHN FV~FVSRQWMDLQDN pOHLQHN pV
KDWiUROy ROGDO ODSMDLQDN D V]iPD N|]|WW iOODStW PHJ |VV]HIJJpVW $ SROLpGHU IRJDOPiQDNW|EEGLPHQ]LyViOWDOiQRVtWiViYDOpVDSROLpGHUHNLQYDULiQVDLQDN DPHJKDWiUR]iViYDOIRJODONR]LNW|EEHNN|]|WWDNRPELQDWRULNXVWRSROyJLD %L]RQ WiV $ * JUiI WDUWRPiQDLQDN V]iPD V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN +D D * HJHWOHQ HJ N|UE{O iOO DNNRU D WDUWRPiQRN V]iPD $] pOHN pV FV~FVRN V]iPD PHJHJH]LN H]pUW D W HVHWpQD]iOOtWiVLJD]/HJHQD]iOOtWiVLJD]W NUDLJD]VEL]RQ WVXN KRJ LJD] W NUH LV +D DGRWW D * JUiI W WDUWRPiQQDO DNNRU W WDUWRPiQQDO UHQGHONH]{ * JUiIRW RO PyGRQ NDSXQN KRJ YDODPHO WDUWRPiQWHJYYRQDOODONpWWDUWRPiQUDERQWXQN $ YRQDOYNH]G{pVYVYpJSRQWMDD*QHNLVSRQWMDYROW H]IHOWHKHW{ Y WyOYVLJV~MFV~FVSRQWpVV GDUDE ~M pO YDQ * UH YRQDWNR]yODJ HNNRU Q QVW WT TV pV D] LQGXNFLyV IHOWHYpV PLDWW HNNRU n − q + t = 2 $] iEUiQV]DJDWRWW YRQDOODO D]
~M pOHNHW pV UHV N|U|NNHO MHO|OWN D] ~M SRQWRNDW /HJHQDGRWWDVtNRQNpWSiUKX]DPRVHJHQHVHpVI/HJHQYYYH HJPiVXWiQN|YHWNH]{SRQWMDpVIQHNKiURPSRQWMDXXX$YYY SRQWRNDW Ki]DNQDN V D] XXX SRQWRNDW NXWDNQDN QHYH]]N $]W D * JUiIRW PHOQHN D FV~FVDL D] HO{EEL NXWDN LOO Ki]DN pV EiUPHO NXWDW EiUPHO Ki]]DO pO N|W |VV]H D KiURPKi]KiURPN~W JUiIQDN PRQGXQN*UiIRNVtNEDUDM]ROKDWyViJiWQHPEHIROiVROMDKDYDODPHOpON|Q HJ ~M PiVRGIRN~ FV~FVSRQWRW YHVV]QN IHO YDJ KD YDODPHO NpW pOpW D JUiIQDN DPHOHN XJDQ DUUD D Y PiVRGIRN~ FV~FVUD LOOHV]NHGWHN HJEHROYDVV]XN V YW W|U|OMN $] HO{EEL NpW WUDQV]IRUPiFLyW Ki]L használatra, nevezzük topológikus bôvítésnek illetve szûkítésnek. HILQtFLy$*JUiIRWD JUiIIDOWRSROyJLNXVDQL]RPRUIQDNPRQGMXN ha G-bôl véges sok topológikus szûkítéssel ill. bôvítéssel G-el izomorf JUiIiOOtWKDWyHO{ 7pWHO *
.XUDWRZVNL $ * JUiI DNNRU pV FVDN DNNRU VtNED UDM]ROKDWy KD QLQFV RODQ UpV]JUiIMD DPHO WRSROyJLNXVDQ L]RPRUI D] |WV]|JSRQW~.WHOMHVJUiIIDOYDJDKiURPKi]KiURPN~WJUiIIDO $ . V D JUiIRNDW D IHQWL WpWHO NDSFViQ XUDWRZVNLIpOH JUiIRNQDN LV V]RNWiN QHYH]QL $ WpWHOW QHP EL]RQ WMXN $] (XOHU IRUPXOiEyO VHJtWVpJpYHO D]RQEDQ N|QQHQ EL]RQ WKDWy KRJ D .XUDWRZVNL IpOHJUiIRNQHPVtNEDUDM]ROKDWyN 7pWHO$.XUDWRZVNLIpOHJUiIRNQHPUDM]ROKDWyNVtNED DNNRU %L]RQ WiV $] (XOHUIRUPXOD V]HULQW KD . VtNED UDM]ROKDWy W TQ W TQ )LJHOHPEHYpYHKRJ.HJHJWDUWRPiQiWOHJDOiEEpOKDWiUROMD pV PLQGHQ pO SRQWRVDQ NpW WDUWRPiQQDN D KDWiUD HNNRU W≤T HJHQO{WOHQVpJQHNNHOOHQHWHOMHVHGQLDPLLWW ! PLDWWQHPLJD]. UyOWXGMXNKRJSiURVJUiIVH]pUWQLQFVRODQN|UHPHOSiUDWODQ VRN pOW WDUWDOPD]QD H]pUW . WDUWRPiQDLW D WDUWRPiQRN KDWiUDL N|UW
DONRWQDN OHJDOiEEpOKDWiUROMD$]HO{EELHNDODSMiQ.pOHLQHNDV]iPD DOXOUyOEHFVOKHW{ W HO V H] HOOHQWPRQG DQQDN KRJ .QDN FVDNpOHYDQ 6tNED UDM]ROKDWy * JUiIRNKR] VRN HVHWEHQ KDV]QRV KR]]iUHQGHOQL HJ * GXiOLV JUiIRW D N|YHWNH]{ PyGRQ PLQGHQ 7L WDUWRPiQiEDQ IHOYHV]QN HJXLSRQWRW/HJHQHVRODQpOH*QHNPHOD7L7MWDUWRPiQRN KDWiUiQ IHNV]LNHNNRUYH]HVVHQHV pOXLEyOXMEH*DNRUOiVFpOMiEyODMiQOMXND .HGYHV 2OYDVyQDN UDM]ROMD OH D V]DEiORV KDWV]|J JUiIMiQDN GXiOLViW 0HJHPOtWMN LWW PpJ KRJ KD D N pO iOWDO KDWiUROW WDUWRPiQRN V]iPiW ϕN YDO MHO|OMN DNNRU HJUpV]W ϕ PLYHO VRNV]|J JUiIRNQiO NL]iUWXN D KXURNpOHNHW PiVUpV]W 2T = 2 ⋅ ϕ 2 + 3 ⋅ ϕ 3 + 4 ⋅ ϕ 4 + . + N ⋅ ϕ N 2 + 6]DEiORVSROLpGHUHN $ KiURPGLPHQ]LyV HXNOLGHV]L WpUEHQ D]RNDW D NRQYH[ SROLpGHUHNHW V]RNWiN V]DEiORVQDN QHYH]QL PHOHNQHN D] pOHL pOV]|JHL pV ODSV]|JHL
HJHQO{HN$SROLpGHUpOHLpVFV~FVDLRODQ*V]DEiORVVtNJUiIRWDONRWQDN D] KRJ VtNED UDM]ROKDWyDN D V]WHUHRJUDILNXV SURMHNFLyYDO OiWKDWy EH PHO JUiIQDN PLQGHQ FV~FVSRQWMiQDN D IRND HJHQO{ HJHQO{ SpOGiXO U UHO pV PLQGHQ WDUWRPiQW XJDQDQQL PRQGMXN K pO KDWiURO 7RYiEEi * GXiOLVD * LV V]DEiORV -HO|OMH D V]DEiORV SROLpGHU FV~FVDLQDN pOHLQHNWDUWRPiQDLQDNDFV~FVRNIRNV]iPiWpVDWDUWRPiQRNDWKDWiUROy pOHN V]iPiW UHQGUH QTW UK KDVRQOyDQ * PHJIHOHO{ DGDWDL OHJHQHN UHQGUH Q T W U K $ * JUiI pOHL pV D FV~FVSRQWRN IRNV]iPDL N|]|WW WHOMHVOD L T UQWRYiEEiUQ KW TW pV WW NLIHMH]YH L E{O DGyGLN T UQ pV W UK Q +HOHWWHVtWVNTWLOOHWYHWWD] () (XOHUIRUPXOiED$]WNDSMXNKRJ LL Q> UK U@ YDJKYDOYpJLJV]RUR]YD LLL Q>KUUK@ K PLYHOQpVKSR]LWtYHJpV]HNH]pUWtUKDWy LY KUKU!LOO Y KUKU Y WV]RU]DWWiDODNtWYDpVUHQGH]YHQHUMN YL K U
$ YL HJHQO{WOHQVpJQHN K pV U SR]LWtY HJpV] YROWD PLDWW FVDN YpJHV VRN PHJROGiVDYDQ9DQQDNRODQPHJROGiVRNPHOHNKH]WDUWR]yJUiIRNV]iPXQNUD JHRPHWULDL RNRN PLDWW pUGHNWHOHQHN 3pOGiXO KD U DNNRU D JUiI PLQGHQ V]|JSRQWMiEDQNpWpOWDOiONR]LND]D]D*JUiIN|UKDK DNNRU FV~FVRN V]iPD pV D * HNNRU D NpW V]|JSRQWEyO V D] D]RNDW |VV]HN|W{ WHWV]{OHJHV V]iP~ pOE{O iOO $] pUGHNHV HVHWHNHW D N|YHWNH]{ WiEOi]DWED IRJODOWXN |VV]H 5 K Q T 7 WtSXV WHWUDpGHU NRFND GRGHNDpGHU RNWDpGHU LNR]DpGHU A szabályos testek elég régóta ismertek. Platón Timaeus c mûvében IHOVRUROMD D] |VV]HV V]DEiORV SROLpGHUW $ N|YHWNH]{ iEUiN D V]DEiORV WHVWHNHWpVVtNEDUDM]ROWJUiIMDLNDWPXWDWMiN NRFND WHWUDpGHU GRGHNDpGHU RNWDpGHU LNR]DpGHU Mátrix reprezentációk Az illeszkedési mátrix HILQtFLy$ G ( E , ϕ ,V )
LUiQ WiVQpONOLJUiILOOHV]NHGpVL LOO LQFLGHQFLD PiWUL[D An ,m ai , j DKRO DLM KD D YL FV~FV LOOHV]NHGLND]HMpOUHpVHJpENpQWKDD]HMpOKXURNpOD MRV]ORSPLQGHQHOHPH di e1 e2 v1 0 1 v2 0 1 v3 0 0 A = v4 0 0 v5 0 0 v6 0 0 v7 0 0 v8 0 0 e3 e4 e5 e6 e7 e8 e9 e10 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 e11 0 0 0 0 0 1 0 1 $IHQWLGHILQtFLyEDQDFV~FVRNV]iPiWQD]pOHNV]iPiWP MHO|OWH D]D] 9 Q pV ( P +XURNpOHNU{O QHP DG KDV]QiOKDWy LQIRUPiFLyW D JUiI LOOHV]NHGpVL e1 e9 PiWUL[D ,UiQ WDWODQ v3 JUiIRN LOOHV]NHGpVL v1 PiWUL[DLQDN D VRUDL LOO D] e3 e10 RV]ORSDLQDN D v8 e4 SHUPXWiOiViYDO e2 e11 HJPiVED iWYLKHW{N +D D e6 e8 JUiIRN * pV D v7 v6 L]RPRUIDN DNNRU D] e7 v2 v5 v4 e5 LOOHV]NHGpVL PiWUL[DLN $ LOO $ D VRUDLN
LOO RV]ORSDLN DONDOPDV SHUPXWiOiViYDO HJPiVED iWYLKHW{N +D D PiWUL[RN HJIRUPiN DNNRU QHP WXGMXN KRJ D PHJIHOHO{JUiIRNL]RPRUIDNHPLYHOD]LOOHV]NHGpVLPiWUL[QHP DG IHOYLOiJRVtWiVW DUUyO KRJ HJ KXURNpO PHOLN FV~FVSRQWUD LOOHV]NHGLN pV PHOLNUH QHP $ WRYiEELDNEDQ FVDN RODQ LUiQ WDWODQ JUiIRN LOOHV]NHGpVL PiWUL[DLUyO EHV]pOQN PHOHNQHN QLQFV KXURNpON $ GHILQtFLy DODWWL PiWUL[ D V]|YHJEH UDM]ROW JUiI LOOHV]NHGpVL PiWUL[D $ PiWUL[ EORNNEyO iOO PLYHO D JUiIXQN NpW NRPSRQHQVH YDQ pV HO{V]|U D] HOV{ NRPSRQHQVEH WDUWR]y FV~FVRNDW LOO pOHNHW DGWXN PHJ ÈOWDOiEDQ LV LJD] KD YDODPHO * JUiI N NRPSRQHQVE{O iOO DONDOPDV PyGRQ LQGH[HOYH D * FV~FVDLW pV RV]ORSDLW D] LOOHV]NHGpVL PiWUL[D N EORNNEyO IRJ iOOQL D]D] D PiWUL[D D] A1 0 . 0 0 A2 . 0 DOiEEL DODN~ OHV] A = DKRO D] $L D * PiWUL[ L . . 0 . An 0
NRPSRQHQVpQHND]LOOHV]NHGpVLPiWUL[D 7pWHO +D D * JUiI UHQGMH Q pV N NRPSRQHQVE{O iOO pV LOOHV]NHGpVLPiWUL[D$DNNRUUJ $ QN DPiWUL[RWD=WHVW I|O|WWLQHNWHNLQWMN D]D]PRG V]iPROXQN %L]RQ WiV $ EL]RQ WiVW D NRPSRQHQVHN V]iPD V]HULQWL WHOMHVLQGXNFLyYDOYpJH]]N/pQHJpEHQDWpWHOHO{WWHPOtWHWW EORNNIHOERQWiVPLDWWHOHJHQG{D]iOOtWiVWN HVHWpQEHOiWQL PLYHODI{iWOyQNtYOPLQGHQWWiOOpVHPLDWWDEORNNRNEyO iOOy KLSHUPiWUL[ UDQJMD PHJHJH]LN D I{iWOyEDQ iOOy EORNN UDQJMDLQDN |VV]HJpYHO /HJHQ * HOV{ NRPSRQHQVH QHN pV OHJHQ FV~FVDLQDN V]iPD Q V LOOHV]NHGpVL PiWUL[D $ $] $ PiWUL[UDQJMDOHJIHOMHEEQOHKHW9DOyEDQDGMXND]$PiWUL[ PLQGHQ VRUiW D] $ PiWUL[ XWROVy VRUiKR] (NNRU D] XWROVy VRU PLQGHQ HOHPH OHV] PLYHO PLQGHQ RV]ORSEDQ GDUDE HJHV YDQ HJ pO SRQWRVDQ NpW FV~FVUD LOOHV]NHGLN +D QQpO NHYHVHEE V VRU |VV]HJH LV W DGQD SpOGiXO D] LLLV
DNNRU YYYVFV~FVRNHJLNpE{OVHPYH]HWQHpOYDODPHOPiVLND YYYV SRQWRNWyO NO|QE|]{ FV~FVSRQWED HOOHQWPRQGYD DQQDN KRJ * |VV]HIJJ{ YROW $] HO{EE PRQGRWWDN PHJLVPpWHOKHW{N * EiUPHO NRPSRQHQVpUH YRQDWNR]yODJ V ILJHOHPEH YpYH KRJ D VSHFLiOLV DODN~ $ KLSHUPiWUL[XQN $L EORNNMDLQDN UDQJMDLQDN D] |VV]HJH PDJiQDN D KLSHUPiWUL[QDN D UDQJMiYDOHJH]LNPHJD]iOOtWiVWEHEL]RQ WRWWXN +D D * JUiI $ LOOHV]NHGpVL PiWUL[iEyO NRPSRQHQVHQNpQW HJHJ VRUW HOKDJXQN DNNRU * ~Q UHGXNiOW LQFLGHQFLD PiWUL[iW NDSMXN 1HP QHKp] EHOiWQL KRJ KD YDODPHO NYDGUDWLNXV QN ⋅ QN DVUpV]PiWUL[GHWHUPLQiQVDQHPDNNRU D UpV]PiWUL[ RV]ORSDLKR] WDUWR]y pOHN * PLQGHQ NRPSRQHQVpQHN NLMHO|OLNHJHJIHV]tW{IiMiW 7pWHO+DD*JUiIHHHNpOHLN|UWDONRWQDNDNNRU D] LQFLGHQFLD PiWUL[ D UHGXNiOW LQFLGHQFLD PiWUL[ HHHNiOWDONLMHO|OWRV]ORSDLOLQHiULVDQIJJ{N %L]RQ WiV $ NLMHO|OW RV]ORSRNQDN
PHJIHOHO{ pOHN N|]O NHWW{YDJLOOHV]NHGLNEiUPHOFV~FVSRQWUDH]pUWDNLMHO|OW RV]ORSRN EiUPHO VRUiEDQ YDJ GDUDE HV iOO V H]HN |VV]HJHPRG YDOyEDQ$]D]DV]yEDQIRUJyYHNWRURN|VV]HJH VH]SRQWRVDQD]WMHOHQWLKRJOLQHiULVDQIJJ{N HILQLFLy $ G ( E , ϕ ,V ) LUiQ WRWW JUiI LOOHV]NHGpVL PiWUL[iQDNQHYH]HPD] An , m ai , j DKRODLM KDDYLFV~FVEDIXW ( ) EH D] HM pO DLM KD YL FV~FVEyO IXW NL D] HM pO pV HJpENpQWKDD]HMpOKXURNpODMRV]ORSPLQGHQHOHPH ËUiQ WRWWJUiILQFLGHQFLDPiWUL[iUDLVKDVRQOyiOOtWiVRN LJD]ROKDWyN PLQW DPLOHQHNHW D] tUiQ WiV QpONOL JUiIRNUD LJD]ROWXQN GH +3RLQFDUH DOiEEL WpWHOH UiYtOiJtW EL]RQRV HOWpUpVHNUH 7pWHO +D D] $ NYDGUDWLNXV PiWUL[ YDODPHO * JUiI LQFLGHQFLD PiWUL[iQDN QHP QXOOD GHWHUPLQiQV~ UpV]PiWUL[D DNNRU GHW $ %L]RQ WiV 7HUPpV]HWHVHQ LWW D YDOyV WHVW I|O|WW V]iPROWXN D GHWHUPLQiQVW /HJDOiEE HJ RV]ORS YDQ D
V]yEDQ IRUJyGHWHUPLQiQVEDQDPHOEHQFVDNHJHOHPNO|QE|]LNWyO fejtsük ki e sor szerint, és az eggyel alacsonyabb rendû DOGHWHUPLQiQVUD LVPpWHOMN PHJ D] HO{EEL RNRVNRGiVW (]W D] HOMiUiVW PHJLVPpWHOYH DQQLV]RU PLQW DPHQQL D GHWHUPLQiQV UHQGMHYpJH]HWODEL]RQ WDQGyiOOtWiVDGyGLN A körmátrix $ . (NL,M ) N|UPiWUL[ D]W PXWDWMD KRJ D G ( E , ϕ ,V ) JUiI pOHL PHO N|U|NEHQ V]HUHSHOQHN HILQLFLy V]HULQW 1, ha e j é le a ki körnek ki , j = ki körnek . 0, ha ej nem é le a ,UiQ WRWW * JUiIKR] KD PLQGHQ N|UK|] PiU NLMHO|OWQN HJHJEHMiUiVLLUiQWDNNRUD]DOiEELXWDVtWiVVDOUHQGHOQN N|UPiWUL[RW 1, ha e é le a k körnek é s irá nyuk egyezô j i ki , j = −1 ha e j é le a ki körnek é s irá nyuk különbözô 0, ha e j nem é le a ki körnek )HOtUMXN D] DOiEEL LUiQ WRWW LUiQ WDWODQ JUiI . N|UPiWUL[iW )ROWRQRV YRQDOODO UDM]ROWXN D * JUiI ) IHV]LW{ IiMiQDN
IDYi]iQDN pOHLW Y Y H H H H Y H H Y H Y H H $ N|U|N LOO pOHN VRUUHQGMpW D] DOiEEL V]DEiO V]HULQW DGMXN PHJ .LMHO|OMN D * JUiI HJ ) IDYi]iW KD QHP YROW |VV]HIJJ{ DNNRU PLQGHQ HJHV NRPSRQHQVpQHN PHJDGMXN HJ IDYi]iW (O{V]|UD])IiUDYRQDWNR]yHLN|W{pOHNHWLQGH[HOMN LWW LYHO pV D] iOWDOXN PHJKDWiUR]RWW N|U|NHW NLYHO ,WW MHJH]N PHJ KRJ D * JUiI ) IDYi]iUD YRQDWNR]yDQ D] H pO N|W{pOKDQHPpOH)QHN$*JUiI)IHV]tW{IiMDpVHN|W{pOH egyértelmûen meghatározza G-nek egy k körét, mivel F maximális |VV]HIJJ{ N|UW QHP WDUWDOPD]y UpV]JUiIMD YROW *QHN ËUiQ WRWW JUiIRN HO{EE HPOtWHWW DODSN|UHLW )UH YRQDWNR]y N|W{pOHLQHNPHJIHOHO{HQtUiQ WMXN 1 0 0 0 0 1 K1 = 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 K2 = −1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 −1 0 1 0 0 0 0 1 −1 1 0 −1 1 0 0 1 1 −1 0 0 1 −1 0 0 0 −1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 ËUMXNIHODNRUiEEDQOHUDM]ROW*LOO tUiQ WRWWJUiI LOOHV]NHGpVL$LOO$PiWUL[iWLV 1 1 A1 = 0 0 0 1 1 0 0 0 1 0 0 1 0 −1 1 −1 0 1 −1 0 −1 A2 = 0 0 0 0 0 0 1 1 0 0 0 0 LV 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 −1 −1 1 0 0 0 0 −1 1 0 0 0 0 −1
9HJN pV]UH KRJ $ .7 1 ]pUXV PiWUL[ pV $ %7 1 7pWHO +D $ * JUiIQDN D] $ LOOHV]NHGpVL LOOHWYH . N|UPiWUL[iQDN RV]ORSDL XJDQD]RQ pOVRUR]DW V]HULQW UHQGH]HWWHNDNNRU$ .7 1pV $7 1 PRG ]pUXVPiWUL[RNDWMHO|O LWW1pV1LV %L]RQ WiV$]LUiQ WiVQpONOLHVHWHWWiUJDOMXNpVRWW LV FVDN D] HOV{W PLYHO DEEyO D PiVRGLN WUDQV]SRQiOiVVDO PHJNDSKDWy+DD]$DLVRUiKR]WDUWR]yYLFV~FVQHPLOOHV]NHGLN D NM N|UUH DNNRU D V]RU]DWPiWUL[ QLM HOHPH PLYHO D YLUH LOOHV]NHG{pOHNQHPpOHLDNMN|UQHN+DD]$DLVRUiKR]WDUWR]y YL FV~FV LOOHV]NHGLN D NM N|UUH DNNRU D V]RU]DWPiWUL[ QLM HOHPH PLYHO D YLUH LOOHV]NHG{ pOHN N|]O SRQWRVDQ pOH D NMN|UQHN A csúcsmátrix ,UiQ WRWW pV LUiQ WiV QpONOL JUiIRN HVHWpQ HJIRUPiQ GHILQLiOKDWMXN D FV~FV YDJ V]RPV]pGRVViJL PiWUL[RW $ PiWUL[ DLM HOHPH D]RNQDN D] pOHNQHN D V]iPiYDO HJH]LN PHJ
DPHOHNYLE{OIXWQDNYMEHWHUPpV]HWHVHQKDD]HpOLUiQ WiV QpONOL pV ϕ (H) = Y LY M = Y MY L DNNRU ~J WHNLQWMN KRJ H YL E{OPHJYMEHpVIRUGtWYDLVD]D]HYME{OPHJYLEH$]D]Q FV~FVSRQW~ LUiQ WiV QpONOL * JUiI FV~FVPiWUL[D V]LPPHWULNXV Q QHVNYDGUDWLNXVPiWUL[+DDGRWW$* (ϕ9 JUiIpV 9 Q akkor csúcsmátrixa n*n-es valós elemû mátrix. ( ) ( ) ( ) HILQLFLy $ * (ϕ9 JUiIQDN Vn n = ai , j FV~FVPiWUL[D KD ai , j = ∑1 ( ϕ ( e ) = vi , v j ) 3pOGDËUMXNIHOD]DOiEELtUiQ WRWWJUiIV]RPV]pGRVViJL YDJDGMHFHQFLDPiWUL[iW Y v1 0 0 0 0 0 0 0 0 Y v2 1 0 0 0 0 0 0 0 v 3 0 1 0 1 1 0 0 0 Y r Y v 4 0 0 0 0 1 0 0 0 Y Y Y V = eUGHPHV v5 0 1 0 0 0 0 0 0 v 6 0 0 0 0 0 0 1 1 v 7 0 0 0 0 0 0 0 2 v8 0 0 0 0 0 0 0 0 PHJMHJH]QL KRJ D FV~FVPiWUL[ D KXURNpOHNU{O LV LQIRUPiO
7RYiEEiKDD*JUiIFV~FVDLW$PyGRQLQGH[HOYHFV~FVPiWUL[D r r 9 $ LOO % PyGRQ LQGH[HOYH 9% DNNRU D VRURN pV D] RV]ORSRN DONDOPDVFVHUpMpYHOHOpUKHW{KRJD]HJLNPiWUL[RWiWYLVV]N Y D PiVLNED 0LYHO XJDQD]RNDW D VRURNDW pV RV]ORSRNDW NHOO IHOFVHUpOQL H]pUW YDQ RODQ 3 SHUPXWiFLy PiWUL[ PHOUH r r 9$ = 3 −19%3 $IHQWLHNEHQOpQHJpEHQEHOiWWXNDN|YHWNH]{WpWHOW 7pWHO +D D * JUiIQDN D FV~FVPiWUL[D $ pV D JUiIQDN FV~FVPiWUL[D % DNNRU D * pV D PiWUL[RN L]RPRUILiMiQDN V]NVpJHV pV HOpJVpJHV IHOWpWHOH D] KRJ OpWH]]pN RODQ 3 SHUPXWiFLyPiWUL[PHOUHWHOMHVOKRJ $ = 3 −1%3 $ FV~FVPiWUL[ KDWYiQDLUyO QHP QHKp] EHOiWQL D] DOiEEL WpWHOW ( ) r n r 7pWHO/HJHQD*JUiIFV~FVPiWUL[D9 $ V A QHNY LQ,M HOHPH PHJDGMD * YL pV YM pOVRUR]DWRNQDNDV]iPiW FV~FViW |VV]HN|W{ LUiQ WRWW %L]RQ WiV7HOMHVLQGXNFLyYDO EL]RQ WXQN Q HVHWpQ D]
iOOtWiVDGyGLNDFV~FVPiWUL[GHILQLFLyMiEyO7HJJNIHOKRJ Q PUH LJD] D] iOOtWiV pV LJD]ROMXN P UH -HO|OMH vi(,k ) D] LQGXNFLyV IHOWHYpV V]HULQW D]RQ P KRVV]~ViJ~ LUiQ WRWW pOVRUR]DWRN V]iPiW PHOHN D] L FV~FVRW D N FV~FFVDO N|WLN m |VV]H 7RYiEEi MHO|OMH vk( ,)j D] N FV~FVRW D M FV~FFVDO 1 |VV]HN|W{pOHNV]iPiW$ vi(, k ) ⋅ vk( ,)j V]RU]DWPHJDGMDD]LFV~FVEyO D M FV~FVED YH]HW{ RODQ LUiQ WRWW P KRVV]~ViJ~ pOVRUR]DWRN V]iPiW PHOHN D N SRQWUD LOOHV]NHGQHN PLNRU m 1 1 m LV N M V]RPV]pGMD N V]HULQW |VV]HJH]YH D vi(, k ) ⋅ vk( ,)j V]RU]DWRNDW PHJNDSMXN D] L FV~FVEyO D M FV~FVED YH]HW{ k =n 1 m+1 m LUiQ WRWW pOVRUR]DWRN V]iPiW PiVUpV]U{O vi(, j ) = ∑ vi(, k ) ⋅ vk( ,)j DPL k =1 QHPPiVPLQWDFV~FVPiWUL[ P KDWYiQiQDNLMHOHPH ( ) r ,0HJMHJ]pV+DYDODPLOHQQUH V A n DNNRUDJUiIQHP WDUWDOPD]KDWtUiQ WRWWN|UW ,,0HJMHJ]pV$FV~FVPiWUL[ MyO
DONDOPD]KDWy YDODPHO $ KDOPD]RQ DGRWW ρ ELQiULV UHOiFLy WXODMGRQViJDLQDN D MHOOHP]pVpUH$*ρ (ϕ9 JUiIRWDN|YHWNH]{PyGRQUHQGHOMND] $KDOPD]RQDGRWWρELQpUUHOiFLyKR] L *FV~FVSRQWMDL$HOHPHLOHV]QHND]D]$ 9 ( ) ( ) LL e = ( vi , v j ) ∈ E ⊆ ( A ⊗ A) ⇔ vi ρv j PiVV]yYDOYLWYMYHO DNNRU pV FVDN DNNRU N|WL pO |VV]H KD YL ρ UHOiFLyEDQ iOO YM YHO $ ρ ELQpU UHOiFLy DNNRU pV FVDN DNNRU UHIOH[tY KD r Gρ ( E , ϕ ,V ) JUiI V A FV~FVPiWUL[iQDN I{iWOyMiEDQ PLQGHQWW iOO $ ρ ELQpU UHOiFLy DNNRU pV FVDN DNNRU V]LPPHWULNXV KD r Gρ ( E , ϕ , V ) JUiI V A FV~FVPiWUL[DV]LPPHWULNXV Matroidok $ PDWURLGHOPpOHWHW +DVVOHU :KLWQH DODSR]WD PHJ D lineáris függõség algebrai elméletét vizsgáló 1935-ös dolgozatával. Az elmúlt 62 esztendõben több könyv is megjelent H WiUJN|UEHQ $ PDWURLGHOPpOHW VRN DONDOPD]iVUD WDOiOW D] iUDPN|U|N DQDOt]LVpEHQ NDSFVROiV
HOPpOHWEHQ OLQHiULV SURJUDPR]iVEDQKiOyHOPpOHWEHQpVJUiIHOPpOHWEHQ HILQtFLy $] 0 ( , UHQGH]HWW SiUW PDWURLGQDN nevezzük, ha rendelkezik a következõ tulajdonságokkal, E véges KDOPD]pV, rendelkezik a következõ tulajdonságokkal: ∅ ∈ , D]D]D]UHVKDOPD]HOHPH,QHN KD [∈ , pV ⊆[ DNNRU ∈,QHN D]D] , EiUPHO [ HOHPpQHNEiUPHOUpV]KDOPD]DLVPpWHOHPH,QHN KD ,S,S∈ , QHN pV ,S ,S DNNRU ∃[ ∈ , S+ ( ) RODQ KRJ , S ∪ {[ } ∈ , H GHILQtFLyQiO D] , pV , XJDQD]W MHOHQWL 3pOGiN L /HJHQ * (ϕ, V) egy egyszerû gráf és , MHO|OMH ( pOHLQHN RODQ UpV]KDOPD]DLW DPHOHN *QHN N|UPHQWHV UpV]JUiIMDLWMHO|OLNNLHNNRUD] (, SiUUHQGHONH]QLIRJD PDWURLGRNWyOPHJN|YHWHOWWXODMGRQViJRNNDO LL /HJHQ ( D] 0 PiWUL[ RV]ORSYHNWRUDLQDN D KDOPD]D D]D] ( ^ PPP PMPV` ( OLQHiULVDQ IJJHWOHQ RV]ORSYHNWRUDLQDN D KDOPD]iW MHO|OMN , YHO
HNNRU D] ( , SiUPDWURLGRWDONRW $]RNDW D] 0 ( ,) matroidokat, amelyeknél E tekinthetõ YDODPHO * JUiI pOHL KDOPD]iQDN pV , HOHPHL D N|UPHQWHV UpV]JUiIMDLpOHLKDOPD]iQDNJUDILNXVPDWURLGRNQDNPRQGMXN $]RNDW D] 0 ( ,) matroidokat, amelyeknél E tekinthetõ YDODPHO PiWUL[ RV]ORSYHNWRUDL KDOPD]iQDN pV , D IJJHWOHQ RV]ORSYHNWRURN KDOPD]iQDN D KDOPD]DNpQW PiWUL[PDWURLGQDN PRQGMXN $ PDWURLGHOPpOHW VRN HOQHYH]pVW IRJDOPDW YHWW iW D lineáris algebrából ill. a gráfelméletbõl Kedves Olvasónknak ezekbõl nyújtunk át egy csokorra valót. Kicsit ömlesztve mellõzve ez egyszer a formákat, reméljük ez nem vezet IpOUHpUWpVUH $] , HOHPHLW IJJHWOHQ KDOPD]RNQDN QHYH]]N $] ,KDOPD]%HOHPpWEi]LVQDNQHYH]]NKDPD[LPiOLVDQIJJHWOHQ Itt a maximális jelzõ nyilván abban az értelemben értendõ, KRJ ( EiUPHOLN RODQ $ UpV]KDOPD]iW LV YHJN DPHOLN YDOyGL PyGRQ WDUWDOPD]]D %W %⊂$ DNNRU D] $
QHP HOHPH , nek. Az E tetszõleges A részhalmazának a UDQJMiQ U $ Q D] $ PD[LPiOLVDQ IJJHWOHQ UpV]KDOPD]iQDN D] HOHPHLQHN D V]iPiW pUWMN +D ( YDODPHO $ UpV]KDOPD]D QHP HOHPH , QHN DNNRU azt függõnek mondjuk. Az A ( $ ⊆ ( UpV]KDOPD]OH]iUWMiQ YDJ $ iOWDO IHV]tWHWW D]W D] VS $ KDOPD]W pUWMN PHOQHN UDQJMDPHJHJH]LN$UDQJMiYDOpVPD[LPiOLV0D[LPiOLVDEEDQD] pUWHOHPEHQ KRJ QHP OpWH]LN RODQ VS $ ¶ KDOPD] PHOQHN D UDQJMD XJDQFVDN PHJHJH]QH $ UDQJMiYDO pV YDOyGL PyGRQ WDUWDOPD]QiVS $ W Egy minimálisan függõ K halmazt N|UQHN QHYH]]QN Minimálisan függõ nyilván abban az értelemben, hogy K-nak semelyik valódi részhalmaza sem lesz függõ, azaz K bármely YDOyGL UpV]KDOPD]D PiU HOHPH , QHN GH PDJD . QHP HOHPH , QHN 7pWHO /HJHQ ; < IJJHWOHQ UpV]KDOPD]RN 0EHQ +D ; HOHPHLQHN D V]iPD NHYHVHEE PLQW < HOHPHLQHN D V]iPD D]D] ; < DNNRU OpWH]LN RODQ
=⊆<; KRJ ; ∪ = < pV ;∪= IJJHWOHQ0EHQ %L]RQ WiV/HJHQ= RODQKRJUHQGHONH]]pND]DOiEEL WXODMGRQViJRNNDO L =⊆<; LL ;∪= IJJHWOHQ0EHQ LLL +D ; ∪ = ≥ ; ∪ = ;∪= IJJHWOHQ 0EHQ pV =⊆<; DNNRU 7HJNIHOKRJOpWH]LNRODQ=KRJ ; ∪ = < < HNNRU OpWH]LN HJ RODQ <⊆< PHOUH < ; ∪ = + 0LYHO < IJJHWOHQ OHKHW DONDOPD] D PDWURLGRN D[LyPiMiW /pWH]LN ∈< − (; ∪ = ) RODQ KRJ ; ∪ = ∪ {} IJJHWOHQ 0EHQ GH D = ∪ {} OpWH]pVH HOOHQWPRQG LLL QHN (]pUW ; ∪ = ≥ < V H]]HO D EL]RQ WiV NpV] .|YHWNH]PpQ $] 0 PDWURLG EiUPHO % Ei]LViQDN D] HOHP V]iPDPHJHJH]LN0UDQJMiYDO %L]RQ WiV /HJHQ % % , akkor az elõzõ tétel V]HULQW OpWH]LN RODQ =⊆ ^ % % ` RODQ KRJ =∪ % IJJHWOHQDPLYLV]RQWHOOHQWPRQG % PD[LPiOLV .|YHWNH]PpQ +D %
pV % Ei]LVDL 0QHN pV [ ∈ % − % ( ) DNNRU OpWH]LN RODQ ∈% − % PHOUH WHOMHVO KRJ % ∪ {} − {[ } Ei]LVD0QHN %L]RQ WiVQpONOPHJHPOtWMN LWW QpKiQ WXODMGRQViJiW D UDQJIJJYpQQHN 7pWHO /HJHQ DGRWW D] 0 [∈(HNNRU ( , PDWURLG pV $%⊆( pV ≤ U($ ) ≤ $ +D$⊆%DNNRUU $ ≤ U % ( ) U($ ) ≤ U $ ∪ {[ } ≤ U($ ) + 4. Részmoduláris egyenlõtlenség U($ ) + U(% ) ≥ U($ ∪ % ) + U($ ∩ % ) ( ) U($ ∪ {}) +D U $ ∪ {[ } ( ) U $ DNNRU U $ ∪ {[ } ∪ {} U $ Ha az E n elemû halmaz k ( ≤ N ≤ Q) elemû részhalmazainak a KDOPD]iW YiODV]WMXN , QHN DNNRU HJ 0 PDWURLGRW NDSXQN PHOHW XQLIRUP PDWURLGQDN V]RNiV QHYH]QL -HOH 8QN $] 8QQ PDWURLGRW V]DEDG PDWURLGQDN PRQGMXN PLYHO ( EiUPHO UpV]KDOPD]D IJJHWOHQ D] 8Q PDWURLGRW WULYLiOLV PDWURLGQDN QHYH]]NPLYHOFVDND]UHVKDOPD]∅IJJHWOHQEHQQH 1HP QHKp] EHOiWQL
8 QHP OHKHW JUDILNXV PDWURLG PLYHO nincs olyan 4 élû gráf, hogy bármely 3 éle kört alkosson. A körökkel kapcsolatos következõ állítások közvetlenül a GHILQtFLyN|YHWNH]PpQHL %iUPHON|UEiUPHOYDOyGLUpV]KDOPD]DIJJHWOHQ+D &pV& különbözõ körök, akkor C⊄& +D&N|UDNNRUU & & $]0PDWURLGEDQDNNRUpVFVDNDNNRUQLQFVN|UKD( PLQGHQ UpV]KDOPD]D IJJHWOHQ HNNRU 0QHN FVDN HJ Ei]LVD YDQ WLPDJD( Gráfok színezése $ QyEDQ VRKD QH IHOHGMN NH]G{L PLYROWXQNDW 9HNHUG 7DPiV A színészi hatás eszközei-Zeami mester mûvei szerint, *RQGRODW R *UiIRN VtNED UDM]ROKDWyViJiUyO EHV]pOYH GHILQLiOWXN D WDUWRPiQ LOOHWYH RUV]iJ IRJDOPiW 7pUNpSHN V]tQH]pVpQpO V]RNiVRV HOMiUiV D] KRJ V]RPV]pGRV RUV]iJRNDW NO|QE|]{ V]tQHNNHO V]tQH]QHN NL .pW RUV]iJRW V]RPV]pGRVQDN V]RNiV QHYH]QL KD D N|]|V KDWiUXN KRVV]D QiO QDJREE V]iP D]D]
YDQN|]|VpON$*VtNEHOLJUiIRWNV]tQH]KHW{QHNPRQGMXNKD * WDUWRPiQDLW NL OHKHW IHVWHQL N V]tQQHO RO PyGRQ KRJ EiUPHO NpW szomszédos ország különbözô színû +D D] DGRWW VtNED UDM]ROKDWy * JUiI GXiOLVD DNNRU D N V]tQQHO YDOy V]tQH]KHW{VpJH * UH YRQDWNR]yODJ D]W MHOHQWL KRJ FV~FVDLW NL OHKHW V]tQH]QL N V]tQQHO RO PyGRQ KRJ V]RPV]pGRV FV~FVRN V]tQHL NO|QE|]{HN $]D] * EiUPHO pOpQHN két végpontja különbözô színû. A színezési probléma duális JUiIUD YDOy iWIRJDOPD]iVD OHKHW{VpJHW DG DUUD KRJ WHWV]{OHJHVJUiIV]tQH]KHW{VpJpU{OEHV]pOMQN HILQtFLy $ * JUiI NURPDWLNXV V]iPD N KD FV~FVDL N V]tQQHONLV]tQH]KHW{NGHNHYHVHEEHO N HOPiUQHP EHQ 0|ELXV HJ HO{DGiViEDQ PHJIRJDOPD]WD D QpJV]tQVHMWpVWPHOD]WiOOtWMDKRJEiUPHOVtNEHOLWpUNpS NLV]tQH]KHW{V]tQQHO$VHMWpVWH0RUJDQWHWWHLVPHUWpÐD SUREOpPiW)UDQFL*XWKULHWyOYHWWHiWN|UO&DOH EHQ
MHOHQWHW PHJ HJ GROJR]DWRW D QpJV]tQVHMWpVU{O D 3URF 5RDO *HRJUDSKLFDO 6RFLHW HOV{ N|WHWpEHQ EHQ +HDZRRG HJ .HPSHW{O V]iUPD]y KLEiV EL]RQ WiVW YL]VJiO pV VLNHUO EHEL]RQ WDQLD KRJ VtNJUiIRNQiO |W V]tQ HOHJHQG{ D V]tQH]pVKH]$QpJV]tQVHMWpVUH.$SSHOpV:+DNHQEDQ V]iPtWyJpS IHOKDV]QiOiViYDO DGWDN EL]RQ WiVW %L]RQ WiVXNEDQ D]RQEDQ D]yWD W|EEHQ pV W|EEV]|U LV WDOiOWDN KLEiW GH D]RN MDYtWKDWyQDN EL]RQXOWDN $ PDWHPDWLNXVRN HJUpV]H $ YLWDWMD D]W KRJ HJ WpWHOQHN D % V]iPtWyJpSHV EL]RQ WiVD HOIRJDGKDWy & H $ WRYiEELDNEDQ VtNEHOL JUiIRNUyO V]HUHWQpQN PHJPXWDWQL KRJ |W V]tQQHO PLQGLJ NL V]tQH]KHW{N $]W EHOiWQL KRJ OHJDOiEE V]tQ szükséges, könnyû. Például a tetraéder síkba rajzolt gráfja FVDNV]tQQHOV]tQH]KHW{NL +D D * JUiIXQN Y SRQWMD PiVRGIRN~ pV YUH HH LOOHV]NHGHWW ϕ H XY pV ϕ H YZ DNNRU YW W|U|OYH pV Y HH pOHN KHOHWW HJ H pOW
EHYH]HWYH ϕ H XZ D V]tQH]pV PyGMD YiOWR]DWODQ PDUDG YLV]RQW D] ~M JUiIXQNEDQ HJJHO NHYHVHEE PiVRGIRN~ SRQW OHV] (OpUKHW{ KRJ RODQ VtNEHOL JUiIRNNDO IRJODONR]XQN DPHOHNQHN QLQFVHQ PiVRGIRN~ FV~FVSRQWMDL +D YDODPHO SRQW IRND QiO QDJREE DNNRU D * JUiIXQNDW iWDODNtWKDWMXN RO PyGRQ KRJ D NLV]tQH]KHW{VpJH QH YiOWR]]pN GH OHJIHOMHEE FVDN KDUPDGIRN~ SRQWMD OHJHQ /HJHQD]DSRQWSpOGiXOD]iEUiQDNPHJIHOHO{HQ|W|GIRN~SRQW 5DM]ROMXQNN|UO|WWHHJ&N|UW6D]DSRQWKHOHWWYH]HVVQN EH~MSRQWRWPHOHNPLQGHJLNHPiUKDUPDGIRN~+DH]XWyEEL JUiI NLV]tQH]KHW{ DNNRU NLV]tQH]KHW{ OHV] D] HUHGHWL LV (OHJHQG{ D]W OiWQL KRJ KD D] ~M JUiI & N|UpW SRQWWi ]VXJRUtWMXN V D N|UW KDWiUROy WDUWRPiQRN V]tQH]pVpW YiOWR]DWODQXOKDJMXNDNNRUDUpJLJUiIQDNHJMyV]tQH]pVpW NDSMXN (]HN V]HULQW VtNEHOL JUiIRN V]tQH]KHW{VpJpW VLNHUOW YLVV]D YH]HWQL DUUD D] HVHWUH PLNRU LV D JUiI PLQGHQ SRQWMD
KDUPDGIRN~ $] DOiEELDNEDQ EHEL]RQ WXQN HJ WpWHOW PHO D]W PRQGMD KRJ EiUPHO VtNED UDM]ROKDWy JUiIQDN YDQ RODQ WDUWRPiQD PHOHW YDJ |WQpO NHYHVHEE pO KDWiURO +D VLNHUO PHJPXWDWQXQN KRJ D] |W YDJ |WQpO NHYHVHEE pOOHO KDWiUROW WDUWRPiQRN PLQGLJ HOKDJKDWyN DQpONO KRJ D PHJYiOWR]RWW JUiI V]tQH]KHW{VpJH YiOWR]QD DNNRU YpJH]HWO LV PHJROGRWWXN D] |WV]tQWpWHO EL]RQ WiViW $ ROGDORQ V]HUHSO{ IRUPXOD V]HULQW 2T = 2 ⋅ ϕ 2 + 3 ⋅ ϕ 3 + 4 ⋅ ϕ 4 + . + N ⋅ ϕ N + DKRO LV T D] pOHN V]iPiW ϕL D] L GDUDE pO iOWDO KDWiUROW WDUWRPiQRNV]iPiWMHO|OWH+DD*JUiIXQNFV~FVDLQDNDV]iPiW QMHO|OLDNNRU (S 2) 3n = 2 ⋅ ϕ 2 + 3 ⋅ ϕ 3 + 4 ⋅ ϕ 4 +.+ k ⋅ ϕ k + WRYiEEi PLYHO W D] bg |VV]HV WDUWRPiQ V]iPiW MHO|OWH 6 3 W = ϕ 2 + ϕ 3 + ϕ 4 +. + ϕ N + 6]RUR]]XNPHJDWPDO6WYHOpV6WWDOHNNRU 6T = 6 ⋅ ϕ 2 + 9 ⋅ ϕ 3 + 12 ⋅ ϕ 4 + . +3N ⋅ ϕ N + b6
2g6Q = 4 ⋅ ϕ 2 + 6 ⋅ ϕ 3 + 8 ⋅ ϕ 4 + . +2N ⋅ ϕ N + b6 3g6W = 6ϕ 2 NDSMXN + 6ϕ 3 + 6ϕ 4 + . +6ϕ N + D & & +D D] HXOHUIRUPXOiW YpJLJV]RUR]]XN WDO DNNRU 12 = 6Q − 6T + 6W DGyGLNVDIHQWL NpSOHWHNHWEHKHOHWWHVtWYH b6 4g12 = 4ϕ 2 + 3ϕ 3 + 2 ϕ 4 + ϕ 5 − ϕ 7 − 2 ϕ 8 − . − (N − 6) ϕ N + DGyGLN $] 6HV IRUPXOD MREE ROGDOiQDN SR]LWtYQHN NHOO OHQQLH H]pUW KDUPDGIRN~ UHJXOiULV JUiIQDN YDQ OHJDOiEE HJ RODQ WDUWRPiQD PHOHW YDJ QpO NHYHVHEE pO KDWiURO $]D] EHEL]RQ WRWWXNDN|YHWNH]{WpWHOW 7pWHO+DD*JUiIVtNEDUDM]ROKDWyKDUPDGIRN~UHJXOiULV JUiI DNNRU YDQ RODQ WDUWRPiQD PHOHW OHJIHOMHEE pO KDWiURO $] |WV]tQWpWHO EL]RQ WiViKR] UHQGUH PHJPXWDWMXN KRJ KDD*JUiIXQNQDNNHWW{KiURPQpJYDJ|WpOiOWDOKDWiUROW WDUWRPiQiW HOKDJMXN pV D] ~M * JUiI |W V]tQQHO MyO V]tQH]KHW{ DNNRU * LV V]tQH]KHW{ OHJIHOMHEE |WV]tQQHO 6 PLYHO D *E{O V]iUPD]WDWRWW
JUiIRN WDUWRPiQDLQDN D V]iPD UHQGUH FV|NNHQQL IRJ HO{EE YDJ XWyEE HOMXWXQN HJ RODQ * Q JUiIKR] PHOQHN OHJIHOMHEE |W WDUWRPiQD YDQ V DNNRU D] PiU WULYLiOLVDQ V]tQH]KHW{ |WV]tQQHO 7HKiW D] |WV]tQWpWHO EL]RQ WiViKR] HOHJHQG{ PHJPXWDWQL KRJ KD D * JUiIQDN HOKDJMXN HJ N (2 ≤ k ≤ 5) pOOHO KDWiUROW WDUWRPiQiW V D QHUW * JUiI OHJIHOMHEE V]tQQHO MyO V]tQH]KHW{ DNNRU LV MyOV]tQH]KHW{V]tQQHO , 7HJNIHOD*KDUPDGIRN~UHJXOiULVVtNEDUDM]ROKDWy JUiIXQNQDNYDQHJ$WDUWRPiQDPHOHWD]DpVEFV~FVRNUD LOOHV]NHG{ pO KDWiURO /HJHQ D] D FV~FV PiVLN V]RPV]pGRV FV~FVD F pV E V]RPV]pGMD G 7|U|OMN D] D LOO E FV~FVRNDW pV D UiMXN LOOHV]NHG{ pOHNHW $ F LOO G FV~FVRNDW N|VVN |VV]H HJ ~M pOOHO +D D] $ D % pV & WDUWRPiQRNNDO % YROWKDWiURVPHOHNHWD],LOO,, , V]tQUH IHVWHWWQN pV $W ,,,UD DNNRU +D D] ~M * JUiI % LOO & $
WDUWRPiQiQDN D V]tQH]pVH , LOO ,,, & ,, DNNRU D] HUHGHWL iOODSRW KHOUHiOOtWiVD HVHWpQ $ V]tQH ~MUD OHKHW ,,, V QHP NHOO YiOWR]WDWQL D * JUiIQDNHVHWOHJPHJOpY{W|EELWDUWRPiQiQDNDV]tQH]pVpQ F D E G ,, ,, +D D * JUiI D KiURPV]|JWDUWRPiQW WDUWDOPD]]D PHOHW D] $ % & WDUWRPiQRN $ KDWiUROQDN DNNRU D] DE FV~FVRNDW W|U|OYH HJHVtWVN D pV D & % WDUWRPiQW V MHO|OMN PRQGMXN & YHO $] tJ QHUW * JUiIQDN KD & D] $ ,YHO% ,,YHO pV & WDUWRPiQD ,,,YHO YDQ V]tQH]YH DNNRUD&WDUWRPiQWDYLVV]DiOOtWiVXWiQ,9YHOV]tQH]]N , ,, ,9 E D ,,, ,,, 7DUWDOPD]]D PRVW D * JUiIXQN D] ) WDUWRPiQW PHOHW QpJ ROGDO pV tJ QpJ WDUWRPiQ KDWiURO V MHO|OMH D]RNDW UHQGUH $%& $ QpJ WDUWRPiQ N|]O D V]HPEH IHNY{N N|]O IHOWpWOHQO YDQ NHWW{ P Q RODQ PHOHN QHP V]RPV]pGRVDN $] iEUiQNQDN PHJIHOHO{HQ OHJHQ % ,, D D] D NHWW{ PRVW % pV
U (JHVtWVN D %) pV E S ,,, 9 WDUWRPiQRNDW RO PyGRQ KRJ D $ ) & ESXF SRQWRNDW pV D , F X UiMXN LOOHV]NHG{ pOHNHW G Y W|U|OMN 9DODPLQW D] DLOO G ,9 FV~FVRNDW pV D] U LOO Y FV~FVRNDW HJHJ ~M pOOHO N|WMN |VV]H $] LO PyGRQ QHUW * JUiIQDN NHWW{YHO NHYHVHEE WDUWRPiQDYDQPLQW*QHNpVKDUPDGIRN~UHJXOiULVJUiI+D V]tQH]pVpEHQ $ LOO & V]tQH , LOO ,,, pV %) V]tQH ,, DNNRUDYLVV]DiOOtWiVXWiQ)V]tQHOHJHQ,9pVV]tQH,, ,9 /HJHQ PRVW * RODQ KRJ WDUWDOPD]]D D] $%&( ( H $ E D ) G F % & WDUWRPiQRN iOWDO KDWiUROW |WV]|JWDUWRPiQW +DVRQOy RNRVNRGiVVDO PLQW D] HO{EE EHOiWKDWy KRJ YDQ RODQ NpW WDUWRPiQ D] $%&( WDUWRPiQRN N|]|WW PHOHN QHP V]RPV]pGRVDN OHJHQHN D]RN SpOGiXO % pV 7|U|OMN *QHN EF W LOO HG W |VV]HN|W{ pOHLW ,WW HO{IRUGXOKDW KRJ D] $&( WDUWRPiQRN V]RPV]pGRVDN pV V]tQH]pVNK|] KiURP NO|QE|]{ V]tQ
NHOO PRQGMXN OHJHQHN D]RN UHQGUH ,,,,,, D QHJHGLN ,9 V]tQ )% V]tQH]pVpKH] NHOO 6 D] HUHGHWL JUiI YLVV]DiOOtWiViQiO D pV % WDUWRPiQRN V]tQH OHKHW ,9 GH ) V]tQH]pVpKH] PiU IHO NHOO KDV]QiOQL D] 9 |W|GLN V]tQW ,O PyGRQEHEL]RQ WRWWXND]DOiEELWpWHOW 7pWHO |WV]tQWpWHO %iUPHO VtNED UDM]ROKDWy VRNV]|J JUiINLV]tQH]KHW{|WV]tQQHO Ramsey-féle problémák HILQLFLy$]Q PN V]iPRW5DPVHIpOHV]iPQDNQHYH]]N KDUHQGHONH]LND]DOiEELWXODMGRQViJRNNDO L KD D * (ϕ9 JUiIQDN D FV~FVSRQWMDLQDN D V]iPD V = n ≥ n(m, k ) DNNRU YDJ * QHN YDQ HJ P FV~FVSRQW~ WHOMHV UpV]JUiIMD YDJ * NRPSOHPHQWHUH WDUWDOPD] HJ N FV~FVSRQW~ WHOMHVJUiIRW LL YDQRODQ* ( ϕ 9 JUiIPHOQHNFV~FVSRQWMDLQDN DV]iPD V = n(m, k ) − 1 pV* QHNQLQFVPSRQW~WHOMHVUpV]JUiIMD pVDNRPSOHPHQWHUpQHNVLQFVNSRQW~WHOMHVUpV]JUiIMD $] LL WXODMGRQViJJDO UHQGHONH]{ JUiIRNDW H[WUpP JUiIRNQDN QHYH]]N
6]HPOpOHWHVHEE PHJIRJDOPD]iVD D 5DPVH IpOH V]iPRNQDN D N|YHWNH]{ +D D] Q PN SRQW~ WHOMHV JUiI pOHLW WHWV]pV V]HULQW SLURVUD YDJ ]|OGUH V]tQH]]N DNNRU vagy egy piros színû teljes m gráfot vagy egy zöld színû k WHOMHV JUiIRW NDSXQN WRYiEEi D] Q PN SRQW~ WHOMHV JUiI pOHLW SLURV LOOHWYH ]|OG V]tQQHO OHKHW ~J V]tQH]QL KRJ VHP piros színû teljes m csúcspontú, sem zöld színû teljes k FV~FVSRQW~JUiIRWQHPWDUWDOPD] 57 7pWHO+D ∀P , N ∈ 1 DNNRU n(m, k ) = n(k , m) %L]RQ WiV$V]tQHNIHOFVHUpOpVpYHODGyGLND]iOOtWiV 57 7pWHO+D ∀P , N ∈ 1 DNNRU n(1, k ) = n(m,1) = 1 n(2, k ) = k , n(m,2) = m %L]RQ WiV $] HJ SRQWEyO iOOy JUiI QHP OpWH]{ pOpW HJDUiQW WHNLQWKHWMN SLURVQDN LOO ]|OGQHN LV +D D N SRQW~ WHOMHV JUiIQDN PLQGHQ V]tQH ]|OG DNNRU WDUWDOPD] HJ ]|OG színû teljes gráfot, ha csak egy éle is piros, akkor tartalmaz HJ SRQW~ WHOMHV SLURV JUiIRW +D D] P SRQW~
WHOMHV JUiIQDN minden színe piros, akkor tartalmaz egy piros színû teljes JUiIRW KD FVDN HJ pOH LV ]|OG DNNRU WDUWDOPD] HJ SRQW~ WHOMHV]|OGJUiIRW 57 7pWHO+DQ PN pV PN OpWH]LNDNNRUQ PN LVOpWH]LNpVQ PN ≤Q PN Q PN %L]RQ WiV /HJHQ DGRWW D .Q PN Q PN WHOMHV JUiI pV pOHLWHWV]{OHJHVHQV]tQH]YHSLURVVDOLOO]|OGGHOpVOHJHQX YDODPHOFV~FVSRQWMD-HO|OMHD*D]XEyOLQGXOySLURVpOHNpV * D] XEyO LQGXOy ]|OG pOHN YpJSRQWMDL iOWDO IHOIHV]tWHWW UpV]JUiIMDLW .Q PN Q PN QDN /HJHQ * FV~FVSRQWMDLQDN D V]iPDQpV*FV~FVSRQWMDLQDNDV]iPDQHNNRU Q1 + Q2 + 1 = Q(P -1,N )+ Q(P ,N -1) SLURV pOHN pV YDJ , Q1 ≥ Q(P -1,N ) YDJ ]|OG pOHN ,, Q2 ≥ Q(P ,N -1) $] , HVHWEHQ * YDJ HJ P SRQW~ WHOMHV * * SLURVJUiIRWWDUWDOPD]pV*KH] KR]]iYpYH XW pV D] XEyO *EH X IXWy SLURV pOHNHW .Q PN Q PN QHN HJ P SRQW~ WHOMHVHQ SLURVUpV]JUiIMiWNDSMXNKD*
EHQ N SRQW~ WHOMHV ]|OG UpV]JUiIXQN YROW DNNRU D] QLOYiQ UpV]JUiIMD .Q PN Q PN QHNLVËJD] , HVHWEHQ.Q PN Q PN WDUWDOPD]YDJHJP SRQW~ WHOMHV SLURV YDJ HJ N SRQW~ WHOMHV ]|OG JUiIRW $ ,, HVHWEHQ LV WHOMHVHQ KDVRQOyDQ EHOiWKDWy KRJ .Q P N Q PN WDUWDOPD]YDJHJPSRQW~WHOMHVSLURVYDJHJN SRQW~WHOMHV]|OGJUiIRWVH]]HODEL]RQ WiVNpV] 57 7pWHO (UG{V3iOpV6]HNHUHV*|UJ +D ∀P , N ∈ 1 m + k − 2 DNNRU n(m, k ) ≤ m−1 %L]RQ WiV N V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN N HVHWpQ WHWV]{OHJHV PUH Q P 5 V]HULQW pV PLYHO m + 1 − 2 1≤ H]pUW HNNRU D] iOOtWiV LJD] 7pWHOH]]N IHO KRJ m−1 D] iOOtWiVXQN WHWV]{OHJHV PUH LJD] N K HVHWpQ pV EL]RQ WVXN N KUD (] XWyEEL iOOtWiVW P V]HULQWL WHOMHV 1 + h − 2 LQGXNFLyYDO EL]RQ WMXN P HVHWpQ 1 ≤ 7HJN IHO 1− 1 KRJ P UH
PiU LJD] D] iOOtWiV EL]RQ WVXN PUH (]HN V]HULQWWXGMXNKRJ m + h − 3 m + h − 3 L n(m − 1, h) ≤ pV n(m, h − 1) ≤ m−2 m −1 $] 57 V]HULQWHNNRUOpWH]LNQ PN pVNLVHEEHJHQO{ PLQWD]Q PN Q PN )HOKDV]QiOYDD] L EHFVOpVHNHW m + k − 3 m + k − 3 (m + k − 3)! + (m + k − 3)! n(m, k ) ≤ + = m − 2 m − 1 (k − 1)!(m − 2)! (k − 2)!(m − 1)! m + k − 2 m−1 k −1 = = (m + k − 3)! + (k − 1)!(m − 1)! (k − 1)!(m − 1)! m − 1 PHJNDSMXNDWpWHOiOOtWiViW /HJHQHN U T T T HJQpO QDJREE YDJ HJJHO HJHQO{ HJpV] V]iPRN $] N (q1 , q2 ,., qt , r ) iOWDOiQRV 5DPVHV]iP KD HOHJHWWHV]DN|YHWNH]{IHOWpWHOHNQHN W +D S ≥ N (q1 , q2 ,., qt , r ) DNNRU EiUPLOHQ Pr (S ) $ ∪ $ ∪∪ $ W HVHWpQ OpWH]LN RODQ i ∈{1,2,., t } pV S , ⊆ S ,
hogy S , qi pV KRJ Pr ( S , ) ⊆ Ai D] N (q1 , q2 ,., qt , r ) QpO NLVHEE V]iP QHP UHQGHONH]LN D] HV WXODMGRQViJJDO D]D] N (q1 , q2 ,., qt , r ) D OHJNLVHEE RODQ HJpV]DPHOUHD]WXODMGRQViJWHOMHVO 7pWHO$] N (q1 , q2 ,., qt ,1) q1 + q2 ++ qt − t + 1 0HJMHJ]pV Az elõbbiekben szereplô n(m,k) az N (m, k ,2) VSHFLiOLV HVHWQHN IHOHO PHJ $ Pr ( S ) az S halmaz r elemû UpV]KDOPD]DLQDNDKDOPD]iWMHO|OWH Generátorfüggvények, rekurzív sorozatok 7HUPpV]HWHV V]iPRN KDOPD]iQ JDNUDQ pUWHOPH]QHN RODQ valós esetleg komplex értékû f(n) függvényeket, melyeknek az n KHOHQ IHOYHWW pUWpNHL D] Q KHOHNHQ IHOYHWW pUWpNHLW{O IJJQHN 3pOGiXO HJ pYH IHQQiOOy YiOODONR]iV DODSW{NpMH QLOYiQ IJJ D] HO{]{ pYHNEHQ D] DODSW{NH Q|YHOpVpUH HVHWOHJ FV|NNHQWpVpUH IRUGtWRWW |VV]HJHN QDJViJiWyO EiU H]HQ |VV]HIJJpVHN NLYiOWNpSS QDSMDLQNEDQ HOpJJp N|G|VHN OHKHWQHN 0L LWW FVXSiQ RODQ UHNXU]tY
|VV]HIJJpVHNNHO IRJXQN IRJODNR]QL PHOHW PDWHPDWLNiQ EHOO OLQHiULVDQUHNXU]tYVRUR]DWRNQDNV]RNiVQHYH]QL HILQtFLy$] 5., un + k = a k −1 u n + ( k −1) + a k − 2 u n + ( k − 2 ) ++ a 1 u n +1 + a 0 u n D]DLNYDOyVYDJNRPSOH[NRQVWDQVRN NpSOHWWHOpVD] X0 ,X1 ,X2 ,.,XN − 2 ,XN −1 NH]G{ pUWpNHNNHO DGRWW VRUR]DWRW k-ad rendû OLQHiULVDQUHNXU]tYVRUR]DWQDNQHYH]]N Másodrendû lineáris rekurzív sorozatok körébôl máig a legnépszerûbb, s valószínûleg a legrégibb példa a FibonacciVRUR]DW X0 = 0, X1 = 1, X2 = 1, X3 = 2 , X4 = 3, X5 = 8, ., XQ + 2 = XQ +1 + XQ /HRQDUGR)LERQDFFL HUHGHWL QHYH /HRQDUGR 3LVDQR SLVDL Leonardo)) Liber Abaki ( könyv az abakuszról ) c. mûvében MHOHQLN PHJ HO{V]|U $ )LERQDFFLVRUR]DW D N|YHWNH]{ SUREOpPiEyO NHOHWNH]HWW +iQ SiU Q~O V]iUPD]KDW HJHWOHQ SiUWyOKD L PLQGHQ SiU KDYRQWD HJ SiUW QHP] DPHO D PiVRGLN KyQDSWyONH]GYHOHV]QHP]{NpSHVpV LL
PLQGHJLNQ~OKDOKDWDWODQ" HILQtFLy$] 5., k-ad rendû lineáris rekurzív sorozat NDUDNWHULV]WLNXVSROLQRPMiQDNQHYH]]NDN|YHWNH]{SROLQRPRW 5. f ( x ) = x k − a k −1 x k −1 − a k − 2 x k − 2 −− a 2 x 2 − a 1 x − a 0 +D D] 5. J|NHL α 1 , α 2 ,, α N SiURQNpQW NO|QE|]{HN DNNRU DVRUR]DWQWDJMDIHOtUKDWy 5. u n = c k α nk + c k −1α nk −1 ++ c2 α n2 + c1α 1n DODNEDQ +D D]RQEDQ FVDN PQ J|NQN YDQ V D] L J|N PXOWLSOLFLWiVDVLDNNRUVRUR]DWXQNQWDJMDD]DOiEELDODNEDQ tUKDWy 5. X = Q L =P ∑α L Q L F + F α + + F L L = L L VL α − VL L − +F α L VL VL L − /iWKDWyKRJDVRUR]DWiOWDOiQRVDODNMDWHOMHVHQDQDOyJ D] iOODQGy HJWWKDWyM~ OLQHiULV GLIIHUHQFLiO HJHQOHWHN PHJROGiViYDO 7pWHO +D D] un + k = a k −1 u n + ( k −1) + a k − 2 u n + ( k − 2 ) +.+ a 1 u n +1 + a 0 u n |VV]HIJJpVW D =1 (]1,1 ,]1,2 ,.,]1,M ,) =2 (]2,1 ,]2,2 ,,]2,M ,)
=N (]N ,1 ,]N ,2 ,,]N ,M ,) VRUR]DWRN NLHOpJtWLN DNNRU WHWV]{OHJHV F1 , F2 ,., FN NRQVWDQVRN HVHWpQ NLHOpJtWL D 9 (Y 1 ,Y 2 ,.,Y M ,) VRUR]DW LV DKRO v j = c1 z1, j + c2 z 2 , j +.+ c k z k , j ( M = 0,1, 2 ,, Q ,) %L]RQ WiV $ WpWHO IHOWpWHOHL V]HULQW EiUPHO L = 1, 2 ,., N pV (Q = N , N + 1, N + 2 ,., K,) HVHWpQWHOMHVOQHND]DOiEELD]RQRVViJRN 5. z i ,n + k = a k −1 z i ,n + ( k −1) + a k − 2 z i ,n + ( k − 2 ) ++ a1 zi ,n +1 + a 0 z i ,n 6]RUR]]XN PHJ D] LW FLYHO PDMG DGMXN |VV]H {NHW HNNRUIHOKDV]QiOYDD]WKRJY M = F1]1,M + F2]2 ,M +. +FN]N ,M DGyGLNKRJ v n + k = a k −1 v n + ( k −1) + a k − 2 v n + ( k − 2 ) +.+ a1 v n +1 + a 0 v n V H] D] DPLW EL]RQ WDQL NHOOHWW 1HP RNR] NO|Q|VHEE QHKp]VpJHW PHJPXWDWQL KRJ KD D] 5. UHNXU]tY |VV]HIJJpV NDUDNWHULV]WLNXV SROLQRPMiQDN αL J|NH DNNRU ]L,M = α LM ( M = 0,1, 2 ,., Q ,) VRUR]DWPHJROGiVD 5 QHN+DαLJ|NH 5 QHN 2 k
k −1 k −2 DNNRU α i = a k −1α i + a k − 2 α i +.+ a 2 α i + a1α i + a 0 D]RQRVViJRW YpJLJ V]RUR]KDWMXN α L QQHOpVOiWKDWyKRJD] 5. WHOMHVO 3pOGD$)LERQDFFLVRUR]DWNDUDNWHULV]WLNXVHJHQOHWH 1± 5 0LYHOXQWXQ = F1α 1Q + F2 α Q2 DODNEDQNHUHVVN 2 KHOpUH Q pV Q W F1 , F2 UH NDSMXN D] DOiEEL [ 2 = [ + 1, J|NHL α 1,2 = tUMXQN EH Q OLQHiULVHJHQOHWUHQGV]HUW F + F = 1 PHOQHNPHJROGiVD F1 = −F2 = $ )LERQDFFL 5 F − F = VRUR]DWQHOHPpWH]HNV]HULQWtUKDWMXND] n 1 1+ 5 1 1− 5 − 5. un = 5 2 5 2 n alakban, mely távolról sem tûnik triviálisnak. 0HJHPOtWMN KRJ NO|Q IROyLUDWD YDQ D )LERQDFFLIpOH V]iPRNQDN 5HNXU]tY VRUR]DWRNUD YRQDWNR]yODJ QHP]HWN|]LOHJ LV HOLVPHUW V]pS HUHGPpQHN NDSFVROyGQDN .LVV 3pWHU pV 3HWK{ $WLOODQHYpKH]PLQGNHWWHQD *{U.iOPiQiOWDOOpWUHKR]RWW GHEUHFHQLV]iPHOPpOHWLLVNRODMHOHVV]HPpOLVpJHL
$JHQHUiWRUIJJYpQHOQHYH]pVWW|EEIpOHpUWHOHPEHQ LV KDV]QiOMiN D PDWHPDWLND NO|QE|]{ WHUOHWHLQ 0L LWW NpWIpOH OHKHWVpJHV pUWHOPH]pVW IRJXQN PHJHPOtWHQL (O{V]|U D] ~J QHYH]HWW SDUWtFLyV SUREOpPiNUD YRQDWNR]y JHQHUiWRU IJJYpQHNU{O EHV]pOQN /HJHQHN DGRWWDN D] Q1 , Q2 ,., QN SR]LWtY HJpV]HN .pUGH]]N KRJ D] P V]iP KiQIpOHNpSSHQ iOOtWKDWy HO{ D] Q1 , Q2 ,., QN N |VV]HJHLNpQW RO PyGRQ KRJ EiUPHO Q1 , Q2 ,., QN V]iPRW W|EEV]|U LV IHOKDV]QiOKDWXQN pV D VRUUHQG QHP V]iPtW $ SDUWtFLyV SUREOpPiQDN D] HO{EEL YiOWR]DWiW V]RNiV SpQ]YiOWiVL SUREOpPiQDN LV QHYH]QL 9L]VJiOMXN PHJ SpOGiXO KRJ YDODPHO V]iPRW KiQIpOHNpSSHQ OHKHW HO{iOOtWDQL D] V]iPRN |VV]HJHNpQW 7HNLQWVN D N|YHWNH]{IJJYpQW ( )( ) f ( x ) = 1 + x 1 + x 2 +.+ x n + ⋅ 1 + x 2 + x 4 ++ x 2 n + ( )( ) *. ⋅ 1 + x 3 + x 6 ++ x 3n + ⋅ 1 + x 5 + x 10 ++ x 5n + = = (1 − x )(1 − x 1 2 )(1 − x )(1 − x ) 3
5 $] I [ IJJYpQ OHV] H] HVHWEHQ D JHQHUiWRU IJJYpQ 1HP YL]VJiOMXN KRJ D] I [ HO{iOOtWiViEDQ V]HUHSO{ KDWYiQVRURN NRQYHUJHQVHN H YDJ VHP +D D] I [ W KDWYiQVRUEDIHMWMN *. f ( x ) = 1 (1 − x )(1 − x )(1 − x )(1 − x ) 2 3 5 = A0 + A1 x + A2 x 2 +.+ Am x m + DNNRU D] $P HJWWKDWy IRJMD PHJPXWDWQL KRJ PW KiQIpOHNpSSHQ OHKHW IHOtUQL D] V]iPRN |VV]HJHLNpQW $] $P HJWWKDWyN PHJKDWiUR]iViUD NO|QE|]{ PyGV]HUHN OpWH]QHN (J OHKHW D N|YHWNH]{ $ *. QHYH]{MpEHQ D V]RU]iVRNDWHOYpJH]YHDGyGLN *. f ( x ) = (1 − x − x 1 2 +x +x −x −x 4 7 9 10 +x 11 ) = A0 + A1 x + A2 x 2 +.+ Am x m + $ QHYH]{YHO YpJLJ V]RUR]YD V ILJHOHPEH YpYH KRJ [P HJWWKDWyMD D EDOROGDORQ KD P! D] $P HJWWKDWyNUD D] DOiEELUHNXU]tY|VV]HIJJpVWQHUMN *. $ P = $ P −1 + $ P −2 − $ P −4 − $ P − 7 + $ P −9 + $ P −10 − $ P −11 $
$NH]GHWLpUWpNHNUHKDPDNNRU$P pVKDP DNNRU 0iV PyGRQ LV PHJKDWiUR]KDWMXN D *. IRUPXOD MREE ROGDOiQ iOOy KDWYiQVRU HJWWKDWyLW $ *. IRUPXOD MREE ROGDOiQYpJH]]NHOD]RV]WiVW *. f ( x ) = (1 − x − x 1 2 + x 4 + x 7 − x 9 − x 10 + x 11 ( ) ) 1 : 1 − x − x 2 + x 4 + x 7 − x 9 − x 10 + x 11 = 1 + x + 2 x 2 + 3x 3 + 4 x 4 + 6 x 5 +. x + x 2 − x 4 − x 7 + x 9 + x 10 − x 11 2 x 2 + x 3 − x 4 − x 5 − x 7 − x 8 + x 9 + 2 x 10 − x 12 3x 3 + x 4 − x 5 − 2 x 6 − x 7 − x 8 − x 9 + 2 x 10 + 2 x 11 + x 12 − 2 x 13 4 x 4 + 2 x 5 − 2 x 6 − 4 x 7 − x 8 − x 9 − x 10 + 2 x 11 + 4 x 12 + x 13 − 3x 14 6 x 5 + 2 x 6 − 4 x 7 − 5x 8 − x 9 − x 10 − 2 x 11 + 4 x 12 + 5x 13 + x 14 − 4 x 15 $]DOiEELGHILQtFLyEDQHJVRUR]DWKR]PiVPyGRQUHQGHOQN JHQHUiWRUIJJYpQW HILQtFLy $GRWW $ D0 , D1 ,., DQ , VRUR]DW 2 m JHQHUiWRUIJJYpQHD] f ( x ) = a 0 + a1 x + a 2 x +.+ a m x
+KDWYiQVRU $] HVHWHN W~OQRPy W|EEVpJpEHQ LWW VHP pUGHNHV KRJ D GHILQtFLyEDQ V]HUHSO{ KDWYiQVRU PLOHQ LQWHUYDOOXPRQ NRQYHUJHQV eUGHPHVPHJYL]VJiOQLDJHQHUiWRUIJJYpQHNVHJtWVpJpYHOD )LERQDFFLVRUR]DWRW/HJHQ *. G( x ) = u0 + u1 x + u2 x 2 ++ un x n + D)LERQDFFLVRUR]DWJHQHUiWRUIJJYpQHD]HO{]{GHILQtFLy pUWHOPpEHQ V V]RUR]]XN PHJ [[HO PDMG [WHO QHUMN D] DOiEELNpSOHWHNHW *. xG( x ) = u0 x + u1 x 2 + u2 x 3 ++ un x n +1 + *. x 2 G( x ) = u0 x 2 + u1 x 3 + u2 x 4 ++ un x n + 2 + KRJ +DD *. E{OUHQGUHOHYRQMXN *. WpV *. WDGyGLN ( ) *. 1 − x − x 2 G( x ) = u0 + (u1 − u0 ) x + (u2 − u1 − u0 ) x 2 ++ (un − un −1 − un − 2 ) x n + [ A (GK8)-ból PHJNDSKDWy *. G( x ) = G(x) zárt alakja egyszerû osztással x 1− x − x2 $* [ MREEROGDOiQiOOyUDFLRQiOLVW|UWIJJYpQWERQWVXN SDUFLiOLV W|UWHN |VV]HJpUH D YDOyV WHVW IHOHWW )LJHOHPEH 1 YpYHKRJDQHYH]{EHQV]HUHSO{SROLQRPJ|NHL
−1 ± 5 2 ( *. G( x ) = ) 1 1 1 x = + 2 1− x − x 5 1 − αx 1 − α x DKRO α = 1 − α = ( ) 1 1 − 5 $ 2 *. MREE ROGDOiQ V]HUHSO{ 1 1 , 1 + α [ + α 2[ 2 +. + αQ[ Q + IJJYpQHN D] 1 − α[ 1 − α[ 1 + α [ + α 2[ 2 +. + α Q[ Q + PpUWDQL VRURNNDO HJH]QHN PHJ )LJHOHPEH YpYH KRJ DEV]RO~W NRQYHUJHQVHN DONDOPDV PyGRQ iWUHQGH]YH PHJNDSMXN KRJ D )LERQDFFLVRUR]DW WDJMDL tUKDWyN n 1 n α − α DODNEDQ|VV]KDQJEDQDNRUiEELHUHGPpQQHO 5. 5 WDO 0HJMHJH]]N KRJ D )LERQDFFLVRUR]DWQDN H]W D] DODNMiW D IHQWL OHYH]HWpVL WHFKQLND KDV]QiODWiYDO / GH 0RLYUH PiU EDQN|]|OWH un =