Matematika | Diszkrét Matematika » Dr. Turjányi Sándor - Kombinatorika és gráfelmélet

Alapadatok

Év, oldalszám:1998, 64 oldal

Nyelv:magyar

Letöltések száma:1202

Feltöltve:2005. április 11.

Méret:479 KB

Intézmény:
-

Megjegyzés:

Csatolmány:-

Letöltés PDF-ben:Kérlek jelentkezz be!



Értékelések

Nincs még értékelés. Legyél Te az első!

Tartalmi kivonat

Dr Turjányi Sándor Kombinatorika és Gráfelmélet 1998. Gráfelméleti alapfogalmak Minden józan ítéletû ember elôtt ismeretes, hogy QpKiQ pY yWD PiU HONH]G{G|WW D] tUiV PDJDU QHOYHQ LV amelyet nekünk Cicero és minden mûveltebb nemzet példája DODSMiQV~ORVRNRNEyOQDSUyOQDSUDPLQGMREEDQpVMREEDQ tôlünk telhetôleg mûvelni és gazdagítani kell. %RUQHPLV]D 3pWHUhGY|]OHWDQiMDVROYDVyQDN 9DQ DNL D JUiIHOPpOHW NH]GHWpW UH GDWiOMD PLNRU LV (XOHU PHJROGRWWD D .|QLJVEHUJLKLGDN SUREOpPiMiW 9DQ DNL .LUFKRII HOHNWURPRV KiOy]DWRNUD YRQDWNR]y EHQ SXEOLNiOW HUHGPpQHLKH] NDSFVROMD D JUiIHOPpOHW NH]GHWpW 0iVRN &DOHQHN HJ EHQ PHJMHOHQW FLNNpW WHNLQWLN D] HOV{ JUiIHOPpOHWL WDQXOPiQQDNPHOHWHJV]HUYHVNpPLDLDONDOPD]iV PRWLYiOW 6 WHUPpV]HWHVHQRODQRNLVYDQQDNDNLN*XWKULHQHN N|UO H 0RUJDQKR]LQWp]HWWNpUGpVpW{OV]iPtWMiNDJUiIHOPpOHWNH]GHWpW

$QHYH]HWHVNpUGpVDQpJV]tQVHMWpVNRUDL PHJIRJDOPD]iVD YROW 0LQGHQHVHWUHWDOiQHOIRJDGKDWyiOOiVSRQWD]KRJ D JUiIHOPpOHW YDODKROYDODPLNRUPHJV]OHWHWWpVD]XWyEELpYEHQHJUHW|EE KHOHQ DONDOPD]]iN RSHUiFLy NXWDWiVEDQ HOHNWURPRV KiOy]DWRN WHUYH]pVpEHQV]iPtWiVWHFQLNiEDQ $ JUiIRNDW QpPLOHJ SRQWDWODQXO ~J LV V]RNWiN MHOOHPH]QL PLQW SRQWRN pV YRQDODN KDOPD]iW (POpNH]YH D JUiIHOPpOHW JHRPHWULDL WRSROyJLDL LQGtWDWiViUD NH]GHWpUH 0L LWW D WiUJDOiV HOHMpQ LJHNV]QN WLV]WiQ D KDOPD]HOPpOHW QHOYpQ GHILQLiOQL D OHJW|EE JUiIHOPpOHWL DODSIRJDOPDW 7HUPpV]HWHVHQ QHP PRQGXQN OH DUUyO D OHKHW{VpJU{O VHP KRJ IHOKDV]QiOMXN D PDWHPDWLND PiV WHUOHWpQ HOpUW HUHGPpQHNHW PRQGDQGyQN MREE PHJYLOiJtWiVDpUGHNpEHQ HILQtFLy /HJHQ DGRWW D] ( pV 9 GLV]MXQNW KDOPD]RN pV OHJHQ DGRWW D] ( KDOPD]QDN D 9[9EH  9 |QPDJiYDO YHWW GLUHNW V]RU]DWiED  YDOy ϕ OHNpSH]pVH HNNRU D * (ϕ9 W LUiQ WRWW

JUiIQDNQHYH]]N $] ( KDOPD] HOHPHLW * (ϕ9  JUiI pOHLQHN pV D 9 KDOPD] HOHPHLWDJUiIFV~FVSRQWMDLQDNPRQGMXN+D e ∈ E é s ϕ (e) = (v1 , v2 ) DKRO v1 , v2 ∈V  DNNRU H]W ~J PRQGMXN KRJ D] H pO Y FV~FV SRQWEyO NLIXW  NLPHJ  V D Y FV~FVSRQWED PHJ YEH IXW  $ ϕ OHNpSH]pVW D JUiI LOOHV]NHGpVL OHNpSH]pVpQHN PRQGMXN $  WRYiEELDNEDQ YDODPHO $ KDOPD] V]iPRVViJiQDN D MHO|OpVpUH D] A V]LPEyOXPRW KDV]QiOMXN ,WW MHJH]]N PHJ KRJ H WiUJRQ EHOO NLYpWHOHV HVHWHNW{O HOWHNLQWYH PDMGQHP PLQGLJ YpJHV KDOPD]RNNDO IRJODONR]XQN D]D] D KDOPD]DLQN HOHPHLQHN D V]iPD YDODPHO QHP QHJDWtYHJpV]$* (ϕ9 JUiIRWYpJHVQHNPRQGMXNKDD](pVD 9 KDOPD]RN YpJHV KDOPD]RN D]D] E , V < ∞  $ WRYiEELDNEDQ KD FVDN D]HOOHQNH]{MpWQHPPRQGMXNPLQGLJYpJHVJUiIRNUyOEHV]pOQN KD HILQtFLy $ G = ( E , ϕ ,V )  UpV]JUiIMiQDN QHYH]]N D G = ( E , ϕ ,V )  L  E ⊆ E ,V ⊆ V pV L  (∀e

∈ E ) ⇒ (ϕ (e) = ϕ (e)) IHOWpWHOHNWHOMHVHGQHN $ IHQWL GHILQtFLyW V]HPOpOHWHVHQ ~J LV PHJIRJDOPD]KDWMXN KRJ D * JUiI EiUPHO  UpV]JUiIMiW PHJNDSKDWMXN RO PyGRQ KRJ * EL]RQRV pOHLW  W|U|OMN pV XJDQFVDN W|U|OKHWMN YDODPHO FV~FVDLW LV $ FV~FVRN W|UOpVpQpO D]RQEDQ JHOQQN NHOO DUUD KRJ D] DGRWW FV~FVUD LOOHV]NHG{ YDODPHQQL pOW LV W|U|OMN Lokális tulajdonságok HILQtFLy $ * (ϕ9  LUiQ WRWW JUiI v ∈V  FV~FViQDN NL IRNiQ D v  FV~FVEyO NLIXWy pOHN V]iPiW pUWMN pV δ ki (v ) YHO MHO|OMN HILQtFLy $  LUiQ WRWW JUiI v ∈V  FV~FViQDN EH IRNiQ D v FV~FVEDEHIXWypOHNV]iPiWpUWMNpV δ be (v ) YHOMHO|OMN ,7pWHO+D* (ϕ9 YpJHVJUiIDNNRU ∑ δ (v ) = ∑ δ (v ) = ki be v ∈V v ∈V E %L]RQ WiV $] pOHN V]iPD V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN +D D * JUiIQDN QLQFV pOH DNNRU D ∑ δ ki (v );∑ δ be (v ); E v ∈V v ∈V

V]iPRNUHQGUHQXOOiYDOHJHQO{HNVtJDWpWHOiOOtWiVDQLOYiQ WHOMHVO 7pWHOH]]N IHO KRJ D WpWHO LJD] EiUPHO RODQ * JUiIUD DPHOQHN D] pOHLQHN D V]iPD Q YDJ NLVHEE PLQW Q ,JD]ROMXN D] iOOtWiVW D]RQ * JUiIRNUD DPHOHNQHN SRQWRVDQ Q pOH YDQ /HJHQ PRVW DGRWW * (ϕ9  pV E = n + 1 WRYiEEi OHJHQ RODQ G = ( E , ϕ ,V )  UpV]JUiIMD *QHN PHOUH E = n  pV 9 9 WHOMHVHGLN PiV V]yYDO * W  YDODPHO H pOpQHN D W|UOpVpYHO NDSWXN$]LQGXNFLyVIHOWHYpVV]HULQW ∑ δ (v ) = ∑ δ (v) = ki v ∈V be v ∈V E    $]RQEDQ D * (ϕ9  YpJHV JUiI ϕ LOOHV]NHGpVL OHNpSH]pVH EiUPHO e ∈ E élhez egyértelmûen hozzárendel egy (v1 , v 2 )  UHQGH]HWW SiUW DKRO v1  D NL IRNRN v2  D EH IRNRN D] H pO SHGLJ D] pOHN V]iPiW Q|YHOL HJHOHJHO 7HKiW KD  KH] W DGXQN DNNRU SRQWDEL]RQ WDQGy ∑ δ ki (v ) = ∑ δ be (v ) = E HJHQO{VpJDGyGLN v ∈V v ∈V HILQtFLy +D D] H pO

XJDQDEED D SRQWED PHJ YLVV]D DPHOE{O NLIXWRWW DNNRU KXURNpOQHN PRQGMXN D]D] ϕ (e) = (v1 , v 2 ) é s v1 = v 2  HILQtFLy+DD]HHpOHNUH ϕ (e1 ) = (v1 , v 2 ) pV ϕ (e2 ) = (v1 , v 2 ) DNNRU D]HHpOHNHWV]LJRU~DQSiUKX]DPRVDNQDNPRQGMXN HILQtFLy+DD]HHpOHNUH ϕ (e1 ) = (v1 , v 2 ) pV ϕ (e2 ) = (v 2 , v1 ) DNNRU D]HHpOHNHWSiUKX]DPRVRNQDNPRQGMXN HILQtFLy$9KDOPD]|QPDJiYDOYHWWUHQGH]HWOHQV]RU]DWiQ D]W D KDOPD]W pUWMN PHOQHN D] HOHPHL (vi , v j )  DODN~ UHQGH]HWOHQ SiURN-HOH9UQ9 HILQtFLy/HJHQDGRWWD](pV9KDOPD]pVOHJHQDGRWWD] (KDOPD]QDND9UQ9EH 9|QPDJiYDOYHWWUHQGH]HWOHQV]RU]DWiED YDOyϕOHNpSH]pVHHNNRUD* (ϕ9 WJUiIQDNQHYH]]N +D D * JUiI QHP LUiQ WRWW JUiI DNNRU QLQFV pUWHOPH szigorúan párhuzamos élekrôl beszélni. egyszerûen párhuzamos élt HVHWOHJ W|EEV]|U|V pOW PRQGXQN 1LOYiQ D KXURN pO IRJDOPD LUiQ WRWW pV LUiQ WDWODQ JUiI HVHWpQ XJDQD] +D YDODPHO *

JUiIEDQQLQFVVHPSiUKX]DPRVVHPKXURNpODNNRUD]WD*JUiIRW egyszerû gráfQDN QHYH]]N$ .HGYHV 2OYDVy WDOiONR]KDW RODQ N|QYHNNHO LV DPHOEHQ D]RQ * JUiIRNDW PHOHNEHQ SiUKX]DPRV pOHNLVWDOiOKDWyNPXOWLJUiIRNQDNQHYH]LN+DYDODPHOJUiIQDN HJHWOHQpOHVLQFVV]RNiVD]WUHVJUiIQDNPRQGDQL HILQtFLy $ * JUiI Y FV~FViQDN IRNiQ D YUH LOOHV]NHG{ pOHNV]iPiWpUWMN-HOH δ (v )  ,7pWHO  Np]IRJiVL WpWHO DNNRU ∑ δ (v ) = 2 E   +D D G ( E , ϕ ,V )  JUiI YpJHV v ∈V 7HNLQWVQN HJ WiUVDViJRW DKRO D] HPEHUHN QHP FVDN V]yED iOOQDNHJPiVVDOGHRONRURONRUPpJNH]HWLVIRJQDNV{WD]W VHP]iUMXNNLKRJHJHVHNW|EEV]|ULVNH]HWIRJWDNYDJYDODNL |QPDJiYDOIRJRWWNH]HW+DPRVWD]HPEHUHNHWWHNLQWMNDJUiIXQN FV~FVSRQWMDLQDN pV HJHJ Np]IRJiVW HJ pOQHN DNNRU D WpWHO SRQWRVDQ D]W iOOtWMD KRJ D Np]IRJiVRN V]iPD EiUPHO  WiUVDViJEDQ SiURV )pOUHpUWpVHN HONHUOpVH YpJHWW KD ; NH]HW IRJRWW <DO 

DNNRU < LV NH]HW IRJRWW ;HO  PiV V]yYDO D Np]IRJiVRN HJHQUDQJ~DN  $ WpWHO V]LJRU~ EL]RQ WiVD D] , WpWHOEL]RQ WiViKR]KDVRQOyDQW|UWpQKHW+DYDODPHOFV~FVSRQW IRNDDNNRUD]WDSRQWRWL]ROiOWSRQWQDNQHYH]]N .|YHWNH]PpQ $ * JUiI SiUDWODQ IRN~ FV~FVDLQDN D V]iPD SiURV 9DOyEDQD ∑ δ (v ) |VV]HJHWIHOOHKHWERQWDQLNpWUpV]UHNO|Q v ∈V gyûjtve ∑ δ (v) = v ∈V a páros ∑ δ (v ) + v ∈V ,δ ( v ) ≡ 0 mod ( 2 ) és a ∑ δ (v) = 2 E   páratlan fokú csúcsokat azaz v ∈V ,δ ( v ) ≡1 mod ( 2 )  E{OOiWKDWyKRJD ∑ δ (v ) V]iPSiURV v ∈V ,δ ( v ) ≡1 mod ( 2 )  V PLYHO SiUDWODQ VRN SiUDWODQ V]iP |VV]HJH SiUDWODQ H]pUWD ∑ δ (v ) WDJMDLQDNDV]iPDFVDNSiURVOHKHW v ∈V ,δ ( v ) ≡1 mod ( 2 ) Utak, körök, fák  +R]]RQ D I|OG VDUMDW PDJWHUP{ IYHW JP|OFVIiW*HQH]LV%UpVLWK, HILQLFLy $ G = ( E , ϕ ,V )  JUiI e1 , e2 ,., ek  pOVRUR]DWRW W|U|WW YRQDOnak (

vagy egyszerûen csak YRQDOQDN HVHWOHJ VpWiQDN PRQGMXNKD ϕ (e1 ) = (v 0 , v1 ), ϕ (e2 ) = (v1 , v 2 ),., ϕ (ek ) = (v k −1 , v k )  HILQLFLy $] e1 , e2 ,., ek  W|U|WW YRQDODW ~WQDN PRQGMXN KD D v0 , v1 , v2 ,., vk −1 , vk FV~FVRNSiURQNpQWNO|QE|]{HN $ IHQWL GHILQLFLyW ~J LV PHJIRJDOPD]KDWMXN NLFVLW V]HPOpOHWHVHEEHQ  KRJ D * JUiI Y FV~FViEyO ~W PHJ YNED YDJ D] ~W RODQ Q OW W|U|WW YRQDO PHO VHKROVHP PHWV]L |QPDJiW HILQLFLy  $] e1 , e2 ,., ek  W|U|WW YRQDODW N|UQHN FLNOXVQDN PRQGMXNKDD v1 , v2 ,., vk −1 , vk FV~FVRNSiURQNpQWNO|QE|]{HNGHv0 = vk  HILQtFLy $ G( E ,ϕ ,V )  JUiI XY FV~FVSRQWMDLQDN D G XY WiYROViJiQ az õket összekötõ legrövidebb út hosszát értjük. Ha a NpW SRQWRW QHP N|WL |VV]H ~W DNNRU D NpW SRQW WiYROViJiW YpJWHOHQQHN∞WHNLQWMN  HILQtFLy $ G( E ,ϕ ,V )  JUiI SRQWMDL N|]|WWL WiYROViJ PD[LPXPiW D *  gráf átmérõMpQHN QHYH]]N DPLW

GLDP YHO d (u, v )  MHO|OQN GLDP(*((ϕ  9)) = max u ,v ∈V 7pWHO +D D * (ϕ,V) gráf összefüggõ, akkor a csúcspontok halmaza metrikus tér az elõbb értelmezett távolság fogalomra Qp]YH %L]RQ WiV Az összefüggõség miatt d(u,v)∈5 pV G XY  DNNRU pV FVDN DNNRUKDX Y 0LYHO LUiQ WDWODQ JUiIUyO EHV]pOQN QLOYiQ WHOMHVO D V]LPPHWULDLVD]D]G XY G YX  A háromszög egyenlõség azért teljesedik, mert az u,v pontokat összekötõ utak legrövidebbikénél nem lehet rövidebb RODQ~WDPHOQpOPpJSOXV]N|YHWHOPpQWLVV]DEXQNWXGQLLOOLN D]W KRJ PpJ HJ WRYiEEL SRQWRW ZW LV WDUWDOPD]D d (u, v ) ≤ d (u, w) + d (w, v )  HILQLFLy $ G = ( E , ϕ ,V )  JUiIRW |VV]HIJJ{QHN PRQGMXN KD EiUPHOFV~FViEyOYLV]EiUPHOPiVLNFV~FViED~W HILQLFLy $ * JUiIQDN D  UpV]JUiIMiW NRPSRQHQVQHN QHYH]]NKDUHQGHONH]LNDN|YHWNH]{WXODMGRQViJRNNDO L * |VV]HIJJ{ LL  QHP OpWH]LN *QHN RODQ  |VV]HIJJ{ UpV]JUiIMD PHO*

WYDOyGLPyGRQWDUWDOPD]]D 5|YLGHQ IRJDOPD]KDWXQN YROQD ~J LV KRJ * |VV]HIJJ{ PD[LPiOLVUpV]JUiIMDLW*NRPSRQHQVHLQHNQHYH]]N HILQLFLy: A G egyszerû gráfot |VV]HIJJ{pVQHPWDUWDOPD]N|UW IiQDN  PRQGMXN KD ,7pWHO %iUPHO * ID WDUWDOPD] OHJDOiEE HJ HOV{IRN~ FV~FVRW %L]RQ WiV ,QGLUHNW EL]RQ WXQN 7HJN IHO KRJ D] iOOtWiV QHP LJD] D] QLOYiQ DQQLW MHOHQW KRJ * EiUPHO FV~FViQDN D IRND QpO QDJREE YDJ HJHQO{ QHP OHKHW D] |VV]HIJJ{VpJ PLDWW ,QGXOMXQN HO * YDODPHO Y FV~FViEyO Y EyO YH]HVVHQ H pO YEH YE{O H pO YEH pV tJ WRYiEE YN E{O HN YNED  (O{EE YDJ XWyEE YLVV]D pUNH]QN HJ RODQ YM FV~FVED VLWWDN|U DKROPiUNRUiEEDQMiUWXQNPLYHO*QHN YpJHV VRN FV~FVD YDQ pV LQGLUHNW IHOWHYpVQN V]HULQW PLQGHJLN FV~FViQDN D IRND OHJDOiEE NHWW{ YROW $]D] KD EHpUNH]WQN  YDODPHO FV~FVED HJ H pOOHO DNNRU HJ PiVLN H  pOOHO RQQDQ WRYD LV

WXGWXQN EDOOyNi]QL 6 YpJO OiWWXN KRJ D] HM HMHN W|U|WWYRQDO HJ N|UH D * JUiIQDN HOOHQWpWEHQ D]]DO KRJ * ID YROW V D]  HOOHQWPRQGiV RND QLOYiQ D] LQGLUHNW IHOWHYpVQNYDOD HILQtFLy$*JUiIRWHUGnekPRQGMXNKDNRPSRQHVHLIiN ,7pWHO+D*JUiIIDDNNRU V − 1 = E  %L]RQ WiV $ * ID pOHLQHN V]iPD V]HULQWL WHOMHV LQGXNFLyYDOEL]RQ WXN+DD*QHNHJpOHYDQDNNRUD]iOOtWiV LJD]7pWHOH]]NIHOKRJEiUPHORODQIiUDLJD]D]iOOtWiV PHOQHNOHJIHOMHEEQpOHYDQ/HJHQPRVWD G = ( E , ϕ ,V ) IDJUiIQDN QpOHD]D] E = n + 1*HJpOpWW|U|OYH G1 = ( E1 , ϕ 1 ,V1 ) pV G2 = ( E 2 , ϕ 2 ,V2 ) NRPSRQHQVHNUH HVLN V]pW pV QLOYiQ PLQGNHWW{ ID PHOUH PiU D] LQGXNFLyV IHOWHYpV PLDWW LJD] D] iOOtWiV 7HKiW pUYpQHV V1 − 1 = E1  V2 − 1 = E2  H NpW XWyEEL HJHQOHWHW |VV]HDGYD V1 + V2 − 2 = E1 + E2  DGyGLN )LJHOHPEH YpYH KRJ V1 + V2 = V  WRYiEEi E1 + E2 + 1 = E . Látható hogy az n+1 élû

gráfra is teljesül az iOOtWiV ,7pWHO +D D G = ( E , ϕ ,V )  JUiI HUG{ pV N NRPSRQHQVE{O iOO DNNRU V − k = E  %L]RQ WiV $ IHOWpWHO V]HULQW D G = ( E , ϕ ,V )  JUiI D G1 = ( E1 , ϕ 1 ,V1 )  G2 = ( E 2 , ϕ 2 ,V2 )  Gk = ( E k , ϕ k ,Vk )  NRPSRQHVHNE{O iOO PHOHNUH UHQGUH WHOMHVO KRJ V1 − 1 = E1 , V2 − 1 = E2 ,., Vk − 1 = E k  ( N GDUDE HJHQOHW PHJIHOHO{ ROGDODLW |VV]HDGYD DGyGLN D WpWHO iOOtWiVD $] , WpWHOEHQ PHJIRJDOPD]WXN KRJ HJ G = ( E , ϕ ,V ) IDJUiIQDN OHJDOiEE HJ HOV{IRN~  SO v1 ∈V , δ (v1 ) = 1 FV~FVD YDQ ( WpWHOW PRVW N|QQHQ SRQWRVtWKDWMXN RODQ IRUPiQ KRJ HJ IDJUiIQDN OHJDOiEE NpW HOV{IRN~ SRQWMD YDQ 9DOyEDQ D] , WpWHO V]HULQW D JUiI IRNDLQDN |VV]HJH SiURV D]D] D] HO{EE HPOtWHWW HOV{IRN~ FV~FVRQ NtYO WDUWDOPD] PpJ OHJDOiEE HJ v 2 ∈V , δ (v 2 ) = 1 mod(2) YDJ W|EE SiUDWODQ IRN~ FV~FVRW $] ( ) |VV]HIJJ{VpJ PLDWW 2 ≤ δ (v 3 ),2 ≤ δ (v

4 ),.,2 ≤ δ v V  WRYiEEEi δ (v1 ) = 1, 3 ≤ δ (v 2 )  $] HO{EEL HJHQO{VpJHNNHO DOXOUyO EHFVOYH * IRNDLQDN |VV]HJpW ∑ δ (v ) ≥ 2 V DGyGLNDPLHOOHQWPRQGD],WpWHOQHN v ∈V 7pWHO%iUPHOIDJUiIQDNOHJDOiEEHOV{IRN~SRQWMDYDQ  9HJJNpV]UHKRJH]XWyEELiOOtWiVQHPMDYtWKDWyYDJLV YDQ RODQ ID DPHOQHN SRQWRVDQ  HOV{IRN~ SRQWMD YDQ 6]HPOpOWHWKHWQN HJ RODQ JUiIRW PHOQHN FVXSiQ NpW HOV{IRN~ SRQWMDYDQHJIRQDOODOPHOQHNNpWYpJpUHFVRPyWN|WW|WQNV N|]EOV{KHOHNHQN|W|WWQNDIRQiOUD V − 2 FVRPyW$FVRPyNDWD JUiI FV~FVDLQDN pV NpW V]RPV]pGRV FVRPyW N|]YHWOHQO |VV]HN|W{ FVRPy PHQWHV  IRQDO GDUDERW pOQHN WHNLQWQN $ PiVLN V]pOV{VpJHV  IiW V]HPOpOWHVVN HJ WDUDMRVVOOHO $ ID pOHLQHN D WDUDMRVVO WVNpLW WHNLQWVN FV~FVSRQWRNQDN SHGLJ HJUpV]WDWDUDMRVVOWLOOHWYHDWVNpNV]DEDGRQPDUDGWYpJpW $IiQDNHNNRUYDQHJSRQWMDPHOQHNDIRNDNVD]|VV]HV W|EELFV~FVIRND

HILQLFLy$ G = ( E , ϕ ,V ) JUiID G1 = ( E1 , ϕ 1 ,V1 ) JUiIIDOL]RPRUIKD WHOMHVHGQHNDN|YHWNH]{IHOWpWHOHN (i) létezik kölcsönösen egyértelmû αOHNpSH]pVH(QHN(UH (ii)létezik kölcsönösen egyértelmû βOHNpSH]pVH9QHN9UH  LLL   ∀e ∈ E , ha ϕ (e) = v i , v j   (    ⇒ ϕ 1 (α (e)) = (β (v1 ), β (v 2 ))   ) ( ) *UiIRN L]RPRUILiMD NO|QE|]LN D WRSROyJLD KRPHRPRUILD IRJDOPiWyO 7HNLQWVQN SpOGiXO D]W D * JUiIRW  DPHO NpW SRQWEyO V D] D]RNUD LOOHV]NHG{ KXURNpOE{O iOO 5HDOL]iOMD *W NpW |VV]HNDSFVROW NXOFVWDUWy NDULND KD V]pW NDSFVROMXN D NpW NDULNiW DNNRU D NDSRWW *  JUiI L]RPRUI HOGH WRSROyJLDL pUWHOHPEHQ*QHPHNYLYDOHQV YHOHILQtFLy$ = ((  ϕ9 ) JUiI IHV]tW{IiMiQDN PRQGMXN D * W KD UpV]JUiIMD QHN pV  ID PiVUpV]W*PLQGHQFV~FVD QHLVFV~FVD 7pWHO$*JUiIQDNDNNRUpVFVDNDNNRUYDQIHV]tW{IiMDKD *|VV]HIJJ{ %L]RQ WiV

/HJHQ * |VV]HIJJ{ PXWDVVXN PHJ KRJ HNNRU OpWH]LN IHV]tW{IiMD +D * QHP WDUWDOPD] N|UW DNNRU  D] |VV]HIJJ{VpJPLDWWIDpV|QPDJiQDNIHV]tW{IiMD+D*WDUWDOPD] N|UWDNNRUDN|UYDODPHOHpOpWW|U|OYH*E{O JUiIRWNDSXQN DPHO  WRYiEEUD LV |VV]HIJJ{ PDUDG +D * QH YDQ N|UH  DNNRU LVPpWHOKDJXQNHJH pOWD* JUiIEyO9pJHVVRNOpSpVHQEHOO HOMXWXQN HJ RODQ  JUiIKR] PHO PpJ |VV]HIJJ{ GH PiU QLQFV N|UHH]D* N JUiIMyIHV]tW{IiMiQDN $] iOOtWiV PHJIRUGtWiVD WULYLiOLV PLYHO D IDJUiI |VV]HIJJ{ 6 D] LV HOpJ PDJiWyO pUWHW{G{ KRJ KD D * JUiIQDN YDQ|VV]HIJJ{UpV]JUiIMDDNNRU*LV|VV]HIJJ{  6RNHVHWEHQEL]RQXOKDV]QRVQDND]LUiQ WRWWIDIRJDOPD$ * LUiQ WRWW JUiIEDQ D] H H  H  pO VRUR]DW KD ϕ (H ) = (Y   Y ) ϕ (H  ) = (Y  Y  ) ϕ (H ) = (Y −   Y )   pV Y ≠ Y  KD L ≠ M  $ * JUiIQDN N N N N L M

YDODPHOYFV~FVDJ|NHUHKD*EiUPHOYW{ONO|QE|]{FV~FViED HO OHKHW MXWQL LUiQ WRWW ~WWDO $ * JUiI LUiQ WRWW ID KD LUiQ WiV QpONO WHNLQWYH ID pV YDQ HJ Y J|NHUH PHOE{O EiUPHOFV~FViEDYH]HWLUiQ WRWW~W Teljes gráf, komplementer gráf HILQLFLy $ G = ( E , ϕ ,V )  JUiIRW Q V]|JSRQW~ WHOMHV JUiIQDN QHYH]]NKDEiUPHONpWNO|QE|]{FV~FViWpON|WL|VV]HEiUPHO PiVLNFV~FFVDOpV V = n -HOH.Q 7pWHO$.QQSRQW~WHOMHVJUiIpOHLQHNDV]iPD n(n − 1) 2  %L]RQLWiV $ .Q GHILQLFL{MD V]HULQW EiUPHO V]|JSRQW IRND Q $ JUiIXQNQDN |VV]HVHQ Q FV~FVSRQMD YDQ  H]pUW D JUiI FF~SRQWMDL IRNDLQDN D] |VV]HJH SRQWRVDQ Q Q  $] , WpWHO V]HULQWHNNRUDJUiIpOHLQHNDV]iPDSRQWRVDQ /HJHQ DGRWW D * = ((  ϕ9 )  pV 9 = Q egyszerû gráf, s legyen KQ QHN D * = ((  ϕ 9 )  RODQ UpV]JUiIMD PHO  = ((  ϕ9 ) YHO L]RPRUI 7|U|OMN .QQHN * = ((  ϕ 9 ) K|] WDUWR]y pOHLW $ NDSRWW JUiI OHV] *

NRPSOHPHQWHUH 0iV PHJIRJDOPD]iVEDQ = ((  ϕ 9 )  NRPSOHPHQWHUH D * = ((  ϕ9 )  JUiIQDN KD = ((  ϕ 9 )  pOHL WHOMHV JUiIIi HJpV]tWLN NL *W 1LOYiQ D WHOMHV JUiI NRPSOHPHQWHUH D] UHV JUiI pV IRUGtWYD D] UHV JUiI NRPSOHPHQWHUH D WHOMHV JUiI $] Q V]|JSRQW~WHOMHVJUiIRWOHKHW~JWHNLQWHQLPLQWD]QFV~FVSRQW~ QGLPHQ]LyVV]LPSOH[JUiIMiW )HODGDWRN  5DM]ROMRQ RODQ  FV~FVSRQW~ JUiIRNDW PHOHNQHN  KDUPDGIRN~ pV  QHJHGIRN~ SRQWMD YDQ +iQ pOH YDQ D UDM]ROW JUiIRNQDN"  +iQ RODQ  FV~FVSRQW~ JUiI YDQ DKRO D FV~FVRN IRNDL UHQGUH   (J WiUVDViJ WDJMDL Np]IRJiVVDO GY|]OLN HJPiVW %L]RQ WVD EH KRJ SiURV D]RQ HPEHUHN V]iPD DNLN SiUDWODQ VRNV]RUIRJWDNNH]HW %L]RQ WVDEHKRJKDD G( E , ϕ ,V ) egyszerû gráfnak 2 vagy NHWW{QpO W|EE FV~FVD YDQ (V ≥ 2)  DNNRU YDQ NpW D]RQRV IRNV]iP~ FV~FVD (JVDNNYHUVHQHQEiUPHOMiWpNRVMiWV]LNEiUPHOPiVLN

MiWpNRVVDO EL]RQ WVD EH KRJ D YHUVHQ EiUPHO V]DNDV]iEDQ YDQ NpW RODQ YHUVHQ]{ DNLN DGGLJ D]RQRV V]iP~ PpUN{]pVW MiWV]RWWDN 6. Hány olyan 5 pontú ( nem izomorf ) egyszerû gráf van, PHOUHWHOMHVHGLNKRJEiUPHOSRQWMiQDNDIRNDOHJDOiEE %L]RQ WVDEHKRJKDD*|VV]HIJJ{JUiIFV~FVDLQDND V]iPD n ≥ 2 pVpOHLQHNDV]iPDQQpONHYHVHEEDNNRUYDQHOV{IRN~ FV~FVDLV  %L]RQ WVD EH KRJ KD Q V]iP~ WHOHIRQN|]SRQW N|]O EiUPHO NHWW{ N|]|WW OpWHVtWKHW{ |VV]HN|WWHWpV DNNRU YDQ OHJDOiEEQV]iP~N|]YHWOHQ|VV]HN|WWHWpVLV +DHJQSRQW~JUiIPLQGHQSRQWMiQDNDIRNDOHJDOiEEQ DNNRUDJUiI|VV]HIJJ{  %L]RQ WVD EH KD D * JUiI PLQGHQ SRQWMiQDN DIRND OHJDOiEENHWW{DNNRUYDQN|UH  (J VDNN FVDSDW EDMQRNViJUD Q FVDSDW QHYH]HWW EH V HGGLJ Q PpUN{]pVW MiWV]RWWDN OH 0XWDVVD PHJ KRJ YDQ N|]|WWN OHJDOiEE HJ FVDSDW PHO OHJDOiEE  PpUN{]pVW PiU OHMiWV]RWW  %L]RQ WVD EH KRJ D *

|VV]HIJJ{ JUiI YDODPHO pOpW W|U|OYHXMEyO|VV]HIJJ{JUiIRWNDSXQN 13. Bizonyítsa be, hogy az n pontú, n élû egyszerû gráfnak YDQOHJDOiEEHJN|UH  %L]RQ WVD EH KRJ D G( E , ϕ ,V ) összefüggô egyszerû gráf DNNRU pV FVDN DNNRU PDUDG |VV]HIJJ{ HJ e ∈ E  pOpQHN W|UOpVH XWiQKDYDQ*QHNRODQNN|UHPHOWDUWDOPD]]DHW 15. Bizonyítsa be, hogy az összefüggô egyszerû véges gráf pOHLQHN D KDOPD]D DNNRU pV FVDN DNNRU DONRW N|UW KD * YDODPHQQLIRND 0HOLND]DOHJQDJREESHJpV]V]iPDPHOUHDTFV~FV~ WHOMHVJUiISV]HUHVHQ|VV]HIJJ{  17. Mutassa meg, hogy ha egy teljes egyszerû gráf éleihez EiUKRJDQ LV LUiQ WiVW tUXQN HO{ DNNRU D] HUHGPpQO NDSRWW írányított gráfnak szükségszerûen létezik irányított feszítô IiMD  /HJHQ δ 0 (G( E , ϕ ,V )) = min (δ (v )) ≥ v ∈V V −1 2 ,s G egyszerû gráf. %L]RQ WVDKRJ*|VV]HIJJ{,JD]OHV]HD]HO{EELiOOtWiVKD  V − 1 

WHOMHVODKROD>[@IJJYpQD]  2  FVDND δ 0 (G( E , ϕ ,V )) = min (δ (v )) ≥  v ∈V [HJpV]UpV]pWMHO|OL  0XWDVVD PHJ KRJ HJ Q FV~FV~ pV N |VV]HIJJ{ NRPSRQHQVE{OiOOyJUiIEDQD]pOHNV]iPDOHJIHOMHEE (n − k )(n − k + 1) 1 2 OHKHW 20.Bizonyítsa be, hogy egy összefüggô egyszerû gráfban EiUPHO NpW PD[LPiOLV KRVV]~ViJ~ ~WQDN YDQ OHJDOiEE HJ N|]|V FV~FVD  $] DOiEEL *  JUiIRN N|]O PHOHN L]RPRUIDN PHOHN QHP" 22.Határozza meg a kocka gráfjának az átmérõjét   +DWiUR]]D PHJ D] Q GLPHQ]LyV NRFND pV D] Q GLPHQ]LyV szimplex átmérõjét. 24. Határozza meg azon G gráfok átmérõinek a maximumát illetve minimumát, amelyek összefüggõek és csúcspontjaik száma n. Adjom meg olyan gráfokat, melyek átmérõje megegyezik az elõbb HPOtWHWPD[LPXPPDOLOOHWYHPLQLPXPPDO  3HUPXWiFLyNYDULiFLyNNRPELQiFLyNLVPpWOpVVHOpVLVPpWOpVQpONO HILQtFLy $] Q NO|QE|]{

HOHP HJ SHUPXWiFLyMiQ  Q HOHP  HJ U|J]tWHWWVRUUHQGMpWpUWMN 3pOGiXO Q  HVHWpQ OHJHQ  D V]yEDQ IRUJy HOHPHN V D] DGRWW VRUUHQGMN  $ SHUPXWiFLyW OHKHW ~J LV GHILQLiOQL PLQW egy n elemû halmaz önmagára való kölcsönösen egyértelmû leképezését. Az  1 2 3 4 5 6 HO{EEL SHUPXWiFLyW HNNRU PHJ OHKHW DGQL D]    DODNEDQ H] D]  3 2 4 1 5 6  x  DODN D IJJYpQHN WiEOi]DWWDO YDOy PHJDGiViQDN HJ W|P|U MHO|OpVH    f ( x ) $ IHOV{ VRUEDQ IJJHWOHQ YiOWR]y pUWpNHL D] DOVy VRUEDQ D IJJ{ YiOWR]y PHJIHOHO{ pUWpNHL V]HUHSHOQHN Q IDNWRULiOLVQDN PRQGMXN D] HJPiVXWiQ N|YHWNH]{ Q V]iPRN V]RU]DWiW MHOH Q ⋅⋅ Q ⋅Q pV   PHJiOODSRGiVV]HULQW 3Q Q 7pWHO Az n elemû H halmaz összes különbözô permutációinak a száma %L]RQ WiV$+KDOPD]HOHPHLQHNDV]iPDV]HULQWLWHOMHVLQGXNFLyYDO EL]RQ WXQN Q  HVHWpQ D] iOOtWiV

LJD] PHUW HJ HOHPHW FVDN HJIpOHNpSSHQ OHKHW VRUED iOOtWDQL 7pWHOH]]N IHO KRJ D] iOOtWiV LJD] QUH V PXWDVVXN PHJ H IHOWHYpVE{O N|YHWNH]LN  KRJ LJD] Q UH LV /HJHQPHJDGYDD+KDOPD]HOHPHLQHNHJU|J]tWHWWVRUUHQGMHSO (h1 , h2 ,., hn )  %iUPHOLNSHUPXWiFLyQiOD"MHOOHOMHO|OWKHOHN (? h1 ,? h2 ,.,? hn ?) YDODPHOLNpUH EHV]~UKDWMXN D KQW /iWKDWy KRJ D] Q HOHP EiUPHO SHUPXWiFLyMiEyO (n+1) darab különbözô (n+1) elemû permutációt lehet legyártani, tehát Q  H]pUW D EiUPHO QUH WHOMHVO D] (h1 , h 2 , . , h n )  V PLYHO Q Q EL]RQ WiVVDONpV]YDJXQN HILQtFLy/HJHQDGRWWQHOHPPHOHNN|]O l1 , l2 ,., lk UHQGUH HJIRUPD  pV l1 + l2 +. + lk = n   H]HQ HOHPHN HJ U|J]tWHWW VRUUHQGMpW HJ LVPpWOpVHV SHUPXWiFLyQDNQHYH]]N 3pOGiXO KD HJ RV]WiO WDQXOyLW D GROJR]DWXNUD NDSRWW MHJHN DODSMiQVRUUHQGEHiOOtWMXNDNNRUD]HJIRUPDMHJHWNDSRWWWDQXOyNN|]|WW PiUQHPWHV]QNNO|QEVpJHW

7pWHO +D D] Q HOHP N|]O l1 , l2 ,., lk  l1 + l2 +. + lk = n DNNRULVPpWOpVHVSHUPXWiFLyLQDNDV]iPD Pn,l1 ,l2 ,.,lk UHQGUH HJIRUPD pV n!  l1 ! l2 !. lk ! %L]RQ WiV /HJHQ PHJDGYD D (h1 , h2 ,., hn )  HOHPHNQHN YDODPHO LVPpWOpVHV SHUPXWiFLyMD $ SHUPXWiFLyEDQ OpY{ HJIRUPD HOHPHNHW NO|QE|]WHVVN PHJ LQGH[HNNHO pV SHUPXWiOMXN D] HGGLJ D]RQRVQDN WHNLQWHWW HOHPHNHW LV ^3pOGiXO HJ  I{V RV]WiOEDQ  |W|VW pV  QpJHVW DGWXQN pV D  GROJR]DWRNDW   VRUED RV]WRWWXN NL LQGH[HOYH D] HGGLJ HJIRUPiQDN WHNLQWHWW MHJHNHW (51 ,41 , 4 2 ,52 ,53 )  ( SHUPXWiFLyEyO  LVPpWOpV QpONOL SHUPXWiFLy DGyGLN` (JHWOHQ HJ LVPpWOpVHV SHUPXWiFLyEyO l1 ! l2 !. lk ! V]iP~ LVPpWOpV QpONOL SHUPXWiFLyW NDSXQN H]pUW Pn ,l1 ,l2 ,.,lk l1 ! l2 ! lk ! Q V LQQHQ PiUYDOyEDQl1 ! l2 !. lk !YHOYDOyRV]WiVXWiQDGyGLNDWpWHOiOOtWiVD HILQtFLy Q NO|QE|]{ HOHP N|]O NLYiODV]WRWW UHQGH]HWW N HOHPHW

LVPpWOpVQpONOLNDGRV]WiO~YDULiFLyQDNQHYH]]N 3pOGiXO KD HJ IXWy YHUVHQHQ K~V]DQ LQGXOWDN pV D] HOV{  EHIXWyW GtMD]WiN DNNRU D GtMD]RWWDNDW WHNLQWKHWMN  HOHP  KDUPDG RV]WiO~ YDULiFLyMiQDN n k V 7pWHO Q HOHP LVPpWOpV QpONOL NDG RV]WiO~ YDULiFLyLQDN D V]iPD Q Q  Q N  %L]RQ WiV 5|J]tWHWW Q PHOOHWW N V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN N UH D] iOOtWiV LJD] PLYHO Q HOHPE{O W SRQWRVDQ Q IpOHNpSSHQ OHKHW NLYiODV]WDQL 7pWHOH]]N IHO KRJ NUD WHOMHVHGLN pV LJD]ROMXN N UH %iUPHOLN (h1 , h2 ,., hk )  NDG RV]WiO~ YDULiFLyKR] QN HOHP N|]O YiODV]WKDWXQN HJ KNW KRJ HJ (h1 , h2 ,., hk , hk +1 )  N HG RV]WiO~ YDULiFLyW NDSMXQN $]D] LJD] D N|YHWNH]{ |VV]HIJJpV Vkn (n − k ) = Vkn+1 PLiOWDOWpWHOQNEL]RQ WiVWQHUW HILQtFLyQNO|QE|]{HOHPE{OKDNHOHPHWROPyGRQYiODV]WXQNNL KRJ HJ HOHPHW W|EEV]|U LV YiODV]WKDWXQN pV D VRUUHQG V]iPtW DNNRU Q

HOHPNDGRV]WiO~LVPpWOpVHVYDULiFLyMiUyOEHV]pOQN 3pOGiXO KD YDODNL NLW|OW HJ WL]HQQpJ PpUN{]pVHV WRWy V]HOYpQW DNNRUD][HOHPHNQHNPHJDGWDHJHGRV]WiO~YDULiFLyMiW 7pWHOQNO|QE|]{HOHP|VV]HVNDGRV]WiO~LVPpWOpVHVYDULiFLyLQDN DV]iPDVkn,ism = n k  %L]RQ WiV -HO|OMH QQ D] Q NO|QE|]{ HOHPHW H]HQ elemek közül k-t egymásután leírva egy legfeljebb k jegyû számot kapunk az QDODS~V]iPUHQGV]HUEHQPHOHNQHNDV]iPDQLOYiQn k VH]]HODEL]RQ WiV NpV] 7HNLQWKHWMN D] Q NO|QE|]{ HOHP HJ NDG RV]WiO~ LVPpWOpVHVH variációját úgy is mint az n elemû H halmaz önmagával vett k-szoros direkt V]RU]DWiQDN HJ HOHPpW V DNNRU D] LV HOpJ QLOYiQYDOy KRJ N + ⊗ + ⊗ ⊗ + = +  ,WW H  MHO|OL D + KDOPD] HOHPHLQHN D V]iPiW 9HJN   N észre azt is, hogy az n elemû H halmaz k szoros direkt szorzatának a (h KKN HOHPpWWHNLQWKHWMNROPyGRQLVPLQWD]. ^N`KDOPD]RQ

pUWHOPH]HWW I IJJYpQW PHOQHN D] pUWpNHL UHQGUH K K KN (NNRU D K-n értelmezett H-beli értékeket felvevõ különbözõ függvények száma nN *RQGROMD YpJLJ D .HGYHV 2OYDVy KRJ D Q pUWHOPH]HWW +EpOL pUWpNHNHW felvevõ injektív függvények száma Vkn Q Q  Q N  HILQtFLyQNO|QE|]{HOHPN|]ONLYiODV]WYDNHOHPHWPHOHNQpOD UHQGH]pVUH QHP YDJXQN WHNLQWHWWHO D] Q HOHP HJ NDG RV]WiO~ NRPELQiFLyMiWNDSMXN  3pOGiXO KD YDODNL D] |W|V ORWWyQ KHOHVHQ NLW|OW HJ V]HOYpQW DNNRU D  HOHPQHN PHJDGWD HJ |G RV]WiO~ NRPELQiFLyMiW ÈOODSRGMXQN  n  n n!  V]iPRW    V]RNiV ELQRPLiOLV PHJ DEEDQ KRJ    IRJMD MHO|OQL D  k  k (n − k )! k ! HJWWKDWyQDNLVQHYH]QL  n 7pWHOQHOHPNDGRV]WiO~NRPELQiFLyLQDNDV]iPDCkn     k %L]RQ WiV Q HOHP YDODPHO LVPpWOpV QpONOL NDG RV]WiO~

NRPELQiFLyMiEyONV]iP~NDGRV]WiO~LVPpWOpVQpONOLYDULiFLyQHUKHW{ KD D] HOHPHNHW HJPiV N|]|WW SHUPXWiOMXN 7HKiW IHQQiOO D N|YHWNH]{ n! Ckn N Vkn  )LJHOHPEH YpYH KRJ Vkn = n(n − 1).(n − (k − 1)) =  NDSMXN D WpWHO (n − k )! iOOtWiViW HILQtFLy +D D] Q HOHP N|]O RO PyGRQ YiODV]WXQN NL N GDUDERW KRJ HJ HOHP W|EEV]|U LV V]HUHSHOKHW pV D VRUUHQGUH QHP YDJXQN WHNLQWHWWHO DNNRU D] Q HOHP HJ LVPpWOpVHV NDG RV]WiO~ NRPELQiFLyMiUyO EHV]pOQN Ckn,ism. 7pWHO Q HOHP NDG RV]WiO~ LVPpWOpVHV NRPELQiFLyLQDN D V]iPD  n + k − 1 =  k   %L]RQ WiV $ EL]RQ WiV DODS|WOHWH U|YLGHQ FVXSiQ DQQL KRJ megadunk egy kölcsönösen egyértelmû leképezést (n+k-1) különbözô elem k-ad RV]WiO~ LVPpWOpV QpONOL NRPELQiFLyL pV Q NO|QE|]{ HOHP NDG RV]WiO~ LVPpWOpVHVNRPELQiFLyLN|]|WW/HJHQD]QNO|QE|]{HOHPQHJpV D] QN  NO|QE|]{ HOHP QQQN  $]

Q NO|QE|]{ HOHP HJ LVPpWOpVHV NDGRV]WiO~ NRPELQiFLyMD QDJViJ V]HULQW VRUED UHQGH]YH OHJHQ 0 ≤ α1 ≤ α 2 ≤. ≤ α k ≤ n  $] (α 1 ,α 2 ,.,α k )  LVPpWOpVHV NRPELQiFLyQDN IHOHOWHVVN PHJ D] (α 1 ,α 2 + 1,α 3 + 2,.,α k + k − 1)  HOHPHN LVPpWOpV QpONOL N DGRV]WiO~ NRPELQiFLyMiW /iWKDWy KRJ 0 ≤ α1 < α 2 + 1 <. < α k + k − 1 ≤ n + k − 1  H]pUW D] (α 1 ,α 2 + 1,α 3 + 2,.,α k + k − 1)  HOHPHN YDOyEDQ D] QN NO|QE|]{ HOHP ismétlés nélküli kombinációja, s az összeadás egyértelmûsége miatt a leképezés kölcsönösen egyértelmû volta is garantált. %LQRPLiOLVpVSROLQRPLiOLVWpWHO 7pWHO SROLQRPLiOLV /HJHQ ∀a1 , a2 ,., a k ∈ R , ahol R kommutatív gyûrû pVQHJQpOQDJREEWHUPpV]HWHVV]iPHNNRU (a1 + a2 +.ak )n = n! a1s1 a2s2 . aksk  s ! s !. s ! s1 + s2 + . + s k = n 1 2 k ∑ %L]RQ WiV Tudjuk, hogy bármely kommutatív gyûrûben a több tag

V]RU]iViWW|EEWDJJDOROPyGRQYpJH]KHWMNHOKRJPLQGHQWDJRWV]RU]XQN PLQGHQWDJJDO+DIHOtUMXND]QWpQH]{V  (a1 + a2 +.+ak )(a1 + a2 ++ak ) (a1 + a2 ++ak ) V]RU]DWRW  n DNNRUD] a1 elemet s1 − szer az n zá rójelbôl     s1  n − s1 a2 elemet s2 − szer az n − s1 zá rójelbôl     s2   n − s1 − s2 −.− sk −1  ak elemet sk − szor az n − s1 − s2 −.− sk −1 zá rójelbôl   sk   OHKHWNLYiODV]WDQL$] IpOHNpSSHQ  n   n − s1  n − s1 − s2 −.− sk −1     .   sk  s1  s2    n! (n − s1 )! . (n − s1 − s2 −− sk −1 )! n!  (n − s1 )! s1! (n − s1 − s2 )! s2 ! (n − s1 − s2 −.− sk )! sk ! s1 ! s2 ! sk ! 6 H] XWyEEL HJHQO{VpJ MREEROGDOiQ D WpWHOEHQ V]HUHSO{ a1s1 a2s2 . a ksk  WDJ HJWWKDWyMDiOODPLYHOiOOtWiVXQNDWEL]RQ WRWWXNLV 7pWHO  ELQRPLiOLV WpWHO  /HJHQ ∀a1 , a2 , ∈ R , ahol

R kommutatív gyûrû pVQHJQpOQDJREEWHUPpV]HWHVV]iPHNNRU (a1 + a2 ) = n s1 = n  n ∑  s  a s1 = 0 s1 1 a2n − s1  1 %L]RQ WiV .|YHWNH]PpQ $ WpWHO D SROLQRPLiOLV WpWHO VSHFLiOLV HVHWH  n  n  n  n   n n  +   +   +.+  +  = 2  ∗  0  1  2  n − 1  n (1 + 1)n =   n  n  n n −1  n  n  n  −   +   −.+(−1)   + (−1)   = 0  ∗∗  0  1  2  n − 1  n (1 − 1)n =  6]LWDIRUPXOD $ V]LWD IRUPXOD D] HUDWRV]WKHQpV]L V]LWD OHV]iUPD]RWWMD DEEDQ D] pUWHOHPEHQ KRJ D] HUDWRV]WKHQpV]L V]LWD PyGV]HUW DGRWW D]RQ N V]iPRN PHJKDWiUR]iViUD PHOHN SUtPV]iPRN HJ HO{UH PHJDGRWW YpJHV KDOPD]iQDN HJLN HOHPpYHO VHP RV]WKDWyN $ V]LWD IRUPXOD NpSOHWHW DG D + KDOPD]D]RQHOHPHLQHNDV]iPiUDPHOHNQHPHOHPHL+HO{UHDGRWW H1 , H2 ,.,

Hn UpV]KDOPD]DLHJLNpQHNVHP 7pWHO V]LWDIRUPXOD  /HJHQ DGRWW D + YpJHV KDOPD] pV H1 , H2 ,., Hn UpV]KDOPD]DLHNNRU  + ∪ + ∪+  = + − + − + − − + + + ∩ + + + ∩ + + + + ∩ + + Q   + + ∩ + + + +  (−)       ∩ + − + ∩ + ∩ + − − + − Q  Q + ∩ + ∩ + ∩∩+ Q Q      Q = + + ∑ (−) Q − ∑ V = ∩+  %L]RQ WiV ,VPHUW KRJ + ∪ + ∪∪+   Q  ∩ + + + − Q  Q + ∩ + ∩∩+  L ≤ L < L < < LV ≤ Q V   Q  L LV  = + − + ∪ + ∪∪+  H]pUW D Q  Q  EL]RQ WDQGyHJHQO{VpJHNYLYDOHQVD]DOiEELYDO + ∪ + ∪ + ∪∪+    Q = ∑ (−) Q ∑ − V  = + ∩ + ∩∩+ L ≤ L < L < < LV ≤ Q V    L LV ∗  (] XWyEEL IRUPXOD EL]RQ WiViW Q V]HULQWL WHOMHV LQGXNFLyYDO YpJH]]N Q UH D] iOOtWiV QLOYiQYDOyDQ LJD] Q  HVHWpQ + ∪ + = −

+ + − + + − + ∩ + WHOMHVOPHUWDPHWV]HW HOHPHLW GXSOiQ          V]iPROWXN 7pWHOH]]N IHO KRJ D IRUPXOD LJD] KD Q ≥ ,JD]ROMXN D] iOOtWiVW QUH $ [+  ∪ +  ∪ +  ∪  ∪+ Q− ] ∪ + Q = +  ∪ +  ∪ +  ∪  ∪+ Q− + + Q − (+  ∪ +  ∪ +  ∪  ∪+ Q− ) ∩ + Q IRUPXODD] Q  VSHFLiOLV HVHW DONDOPD]iViYDO NDSKDWy PHJ -REE ROGDOiQDN XWROVy WDJMiUDDONDOPD]YDDGLV]WULEXWLYLWiVWDGyGLND]DOiEELFpOMDLQNQDNMREEDQ PHJIHOHO{ IRUPXOD [+  ∪ +  ∪ +  ∪  ∪+ Q− ] ∪ + Q = + ∪ +  ∪ +  ∪  ∪+ Q− + + Q − (+ ∩ + Q ) ∪ (+  ∩ + Q ∪  ∪(+ Q− ∩ + Q )) L $] L  MREE ROGDOiQ V]HUHSO{ HOV{ WDJUD DONDOPD]YD D] LQGXNFLyV IHOWHYpVWtUKDWMXNKRJ − Q  + ∪ + ∪ + ∪∪+   − Q   = ∑ (−) = V   Q ∪ + ∩ + ∪∪ + Q  − Q  + ∩ + ∩∩+ ≤ L < L < < LV ≤ Q −  SHGLJDN|YHWNH]{W +

∩+ ∑ − V   ∩+ L L − Q  Q = ∑ (−) − V  =  Q ∪ + ∩ + ∪∪ + Q  Q − ∩+  Q Q = ∑ (−) V = ∑ + ∩ + ∩∩+ ∩ + LOO ∑ + ∩ + ∩∩+ ≤ L < L < < LV ≤ Q − V  + ∩+ LL DKDUPDGLNWDJUD LV   − V  ≤ L ≤ L ≤ ≤ LV ≤ Q −   L L LV Q  L L LV LLL  $] L  IRUPXOiED YLVV]D tUYD LL  pV LLL W  SRQWRVDQ D EL]RQ WDQGy ∗ IRUPXOiWNDSMXNVH]]HODEL]RQ WiVNpV] +D .|YHWNH]PpQ ,  (i1 ,i2 ,.,is ) ( ) EiUPHO ill. i , i ,, i HVHWpQ + ∩ + ∩∩+ , 1 , 2 , s L L LV VUH  pV WHWV]{OHJHV = + ∩ + ∩∩+ DNNRU L   L    LV  Q + ∪ + ∪∪+ = + + ∑ (−)   + ∩ + ∩∩+   V = Q V   Q   V V   .|YHWNH]PpQ ,, /HJHQ$N$QHlemû halmaz , ekkor a AW$EH n s  n k NpSH]{V]UMHNWtYOHNpSH]pVHN IJJYpQHN V]iPD n k + ∑

(−1)   (n − s)   s s =1 %L]RQ WiV $] ,  N|YHWNH]PpQW DONDOPD]]XN DUUD D] HVHWUH KD +L MHO|OL D]RNDW D] $W $UH NpSH]{ IJJYpQHNHW PHOHNQpO D] $ DL HOHPH QHPOpSIHONpSNpQW 0HJMHJ]pV $ V]LWD IRUPXOiQDN D V]iPHOPpOHWEHQ YDQQDN NLIHMH]HWWHQ ILQRP pV UHQGNLYO PpO DONDOPD]iVDL .RPELQDWRULNiEDQ D V]LWD V]pS iOWDOiQRVtWiVDN|V]|QKHW{*&5RWDQDN 3HUPXWiFLyNV]LPPHWULNXVFVRSRUW )JJYpQHN N|UpEHQ LVPHUW D] |VV]HWHWW IJJYpQ  NpS]pV mûvelete, ennek megfelelôen értelmezhetünk a permutációk között is egy mûveletet, a permutációk szorzását, mint a megfelelô leképezések HJPiVXWiQYpJUHKDMWiViW3pOGD  1 2 3 4 5 6  1 2 3 4 5 6      6 3 4 1 2 5  2 1 4 3 6 5  1 2 3 4 5 6    3 6 1 4 5 2 MREEUyOEDOUD  V]RUR]WXQN DQQDN PHJIHOHO{HQ KRJ KD D] ,WW I J  |VV]HWHWW IJJYpQ D]W MHOHQWL KRJ HO{V]|U YpJUHKDMWMXN JW PDMG

IW3HUV]HD]HO{EELV]RU]iVWHOYpJH]KHWMN  1 2 3 4 5 6  1 2 3 4 5 6      6 3 4 1 2 5  2 1 4 3 6 5  1 2 3 4 5 6    5 4 3 2 1 6 EDOUyOMREEUD  LV  D] HUHGPpQ SHUV]H iOWDOiEDQ PiV OHV] NLYpYH KD D NpW HOHP IHOFVHUpOKHW{   DOJHEUDL V]HPSRQWEyO D]RQEDQ ugyanaz az algebrai struktúra adódik mindkét esetben, célszerû adott WpPDN|U|QEHOO D]RQEDQ FVDN D] HJLN tUiVPyGRW KDV]QiOQL 0L D] XWyEEL D EDOUyOMREEUD tUiVPyGKtYHLYDJXQN 7pWHO Az n elemû H halmaz permutációi a permutációk szorzására Qp]YH FVRSRUWRW DONRWQDN -HOH 6Q D 6 D V]LPPHWULiUD XWDO D FVRSRUW V]RNiVRVQHYHDV]LPPHWULNXVFVRSRUW %L]RQ WiV,JD]ROMXNVRUEDQKRJWHOMHVHGQHNDFVRSRUWD[LyPiN L  $ SHUPXWiFLyN V]RU]iVD két változós algebrai mûvelet PHUW D + önmagára való kölcsönösen egyértelmû leképezéseinek egymásutánja is, H önmagára való kölcsönösen egyértelmû leképezése. LL

 $] DVV]RFLDWtYLWiV LV WHOMHVO PLYHO OHNpSH]pVHN V]RU]iVD PLQGLJDVV]RFLDWtY LLL /pWH]LNHJVpJHOHPWLD]LGHQWLNXVOHNpSH]pV LY  0LQGHQ HOHPQHN YDQ LQYHU]H is, mivel a kölcsönösen egyértelmû OHNpSH]pVHNLQYHUWiOKDWyN  HILQtFLy$]WDSHUPXWiFLyWPHOEHQNpWHOHPFVHUpOWFVXSiQKHOHW  1 2 . i j n WUDQV]SR]LFLyQDN QHYH]]N 3pOGiXO $]    SHUPXWiFLy D] L  1 2 . j i n MHOHPHNQHNHJWUDQV]SR]LFLyMD %iUPHO WUDQV]SR]LFLyW IHOtUKDWXQN V]RPV]pGRV WUDQV]SR]LFLyN  1,2,., i ,, j ,, n V]RU]DWDNpQW $] LGHQWLNXV SHUPXWiFLyEyO   E{O ( M − L)  GDUDE  1,2,., i ,, j ,, n V]RPV]pGRV HOHPQHN D WUDQV]SR]LFLyMiYDO FVHUpMpYHO  NDSMXN D . j − 1 j n  1 2 . i    SHUPXWiFLyW V H] XWyEEL SHUPXWiFLyEyO i − j − 1 j i. n  1 2 . i + 1 b g  1 2 . i j n V]RPV]pGRV HOHP FVHUpYHO DGyGLN D    SHUPXWiFLy D]D] D]  1 2 . j i n LGHQWLNXVSHUPXWiFLyEyO (2(i − j )

− 1) V]RPV]pGRVHOHPQHNDFVHUpMpYHOPHJNDSMXN D]LWMYHOIHOFVHUpO{WUDQV]SR]LFLyW HILQtFLy 2 1  α 1 α 2 . i . α i . j . α j $] αi , α j  HOHPHN LQYHU]LyEDQ YDQQDN D] . n   SHUPXWiFLyEDQKD α j < α i  .α n  HILQtFLy 9DODPHO SHUPXWiFLyW DV]HULQW PRQGXQN SiURVQDN LOO SiUDWODQQDN  KRJ D SHUPXWiFLyEDQ OpY{ LQYHU]LyN V]iPD SiURV YDJ SiUDWODQ $] HGGLJLHN DODSMiQ QLOYiQYDOy KRJ V]RPV]pGRV HOHPHN FVHUpMHNRU D SHUPXWiFLyEDQ OpY{ LQYHU]LyN V]iPD YDJ HO Q{ YDJ HJJHO FV|NNHQ 6 PLYHO EiUPHO WUDQV]SR]LFy D] LGHQWLNXV SHUPXWiFLyEyO SiUDWODQ VRN V]RPV]pGRV HOHP FVHUpMpYHO PHJNDSKDWy H]pUW EiUPHO WUDQV]SR]LFLy SiUDWODQSHUPXWiFLy 7pWHO V]RU]DWDNpQW %iUPHO SHUPXWiFLy HO{iOO YpJHV VRN WUDQV]SR]LFLy %L]RQ WiV +D DGRWW YpJHV VRN HOHPQHN HJ U|J]tWHWW VRUUHQGMH DNNRU HOHPHNQHN SiURQNpQWL IHOFVHUpOpVpYHO HOMXWKDWXQN EiUPHO PiV HO{UH U|J]tWHWW VRUUHQGKH] LV

$] HOHPHNQHN D V]iPD V]HULQW EL]RQ WKDWXQN Q Q UH D] iOOtWiV WULYLiOLV 7HJN IHO KRJ D] iOOtWiV LJD] Q≥ UH pV EL]RQ WVXN QUH $] LQGXNFLyV IHOWHYpV V]HULQW HOpUKHW{ WUDQV]SR]LFLyNNDO KRJ D] HOV{ Q HOHP D KHOpQ OHJHQ KD D] XWROVy NHWW{ QHP D KHOpQ iOO  DNNRU PHJFVHUpOYH {NHW NpV] YDJXQN D EL]RQ WiVVDO .|YHWNH]PpQ $ SiURV SHUPXWiFLyN D V]RU]iVUD Qp]YH FVRSRUWRW DONRWQDN $SiURVpVDSiUDWODQSHUPXWiFLyNV]iPDPHJHJH]LNKDn ≥ 2  $]QHOHP|VV]HVSHUPXWiFLyLQDNDFVRSRUWMiWW|EEIpOHPyGRQLVOHKHW UHSUH]HQWiOQL /HJHQ DGRWW D] Q GLPHQ]LyV WpUEHQ HJ V]DEiORV Q FV~FVSRQW~ 6=Q V]LPSOH[ $] 6=Q V]LPSOH[ |QPDJiUD YDOy WiYROViJWDUWy KRPRJpQ OLQHiULV OHNpSH]pVHLQHN D FVRSRUWMD SRQWRVDQ D] Q HOHP V]LPPHWULDFVRSRUWMiYDOHJH]LNPHJ  7HNLQWVN D]RNDW D] E 1 2 . i  α α 2 . α i  1 . j . α j . n   . α n   Q Q HV PiWUL[RNDW DPHOHN D] Q Q

 ( HJVpJ PiWUL[EyO ~J NHOHWNH]QHN KRJ D] LLN RV]ORSED( α i LNHOHPHNHUO$] E 1 2 . i j n  PiWUL[RNDV]RNiVRV   α 1 α 2 . α i . α j  . α n  V]RU]iVUD Qp]YH FVRSRUWRW DONRWQDN V H FVRSRUW L]RPRUI D] Q  HOHP V]LPPHWULDFVRSRUWMiYDO )HODGDWRN  $] $ YiURVEyO % YiURVED  RQQDQ &EH  ~W YH]HW +iQIpOHNpSSHQ OHKHWHOMXWQL$EyO&EH%QNHUHV]WO"  .pW YpJYiUQDN   NDWRQiMD YDQ   NDWRQiW NLiOOtWDQDN SiUYLDGDOUD+iQIpOHNpSSHQYiODV]WKDWQDNNLHJSiUW"  (J KHJ FV~FViUD  ~W YH]HW (J WXULVWD IHOPHJ YDODPHO ~WRQ PDMGOHM|QHJPiVLNRQ+iQIpOH~WYRQDON|]|WWYiODV]WKDWRWW" $VDNNWiEOiQKiQIpOHNpSSHQYiODV]WKDWXQNNL L HJIHKpUpVHJIHNHWHPH]{W LL  HJ IHKpU pV HJ IHNHWH PH]{W RO PyGRQ KRJ NO|QE|]{ VRUED pVNO|QE|]{RV]ORSEDOHJHQHN"  +DW Ki]DVSiU N|]O KiQIpOHNpSSHQ OHKHW NLYiODV]WDQL HJ IpUILW

pVHJQ{WKRJDNpWNLYiODV]WRWWQHPKi]DVSiU" (JNRViUEDQDOPDLOO EDUDFN YDQ -XOLVND NLYHV]  DOPiW YDJ HJ EDUDFNRW -XOLVND XWiQ -DQFVL YiODV]W HJ DOPiW pV HJ EDUDFNRW LV0LNRUYDQ-DQFVLQDNW|EEYiODV]WiVLOHKHW{VpJHKD-XOLVNDDOPiWYDJ KDEDUDFNRWYHWW"  -DQFVLND pV -XOLVND YLUiJRW V]HGWHN D] HUG{EHQ  KyYLUiJRW  LEROiW pV  JyODKtUW +D]DIHOp PHQYpQ HORV]WRWWiN D YLUiJRW HJPiV N|]|WWKiQIpOHNpSSHQWHKHWWpNPHJD]W"  $] $ LOO % YiURVRNDW  I{~WYRQDO N|WL |VV]H pV D]RNDW  másodrendû útvonal keresztezi. Hányféle úton lehet eljutni A-ból B-be, IHOWpYHKRJHJ~WRQOHJIHOMHEEHJV]HUPHJQNYpJLJ"  $] $EyO LQGXOy YRQDWRQ Q XWDV YDQ V %LJ P PHJiOOy OHJNpV{EE %EHQPLQGHQNLNLV]iOO+iQIpOHNpSSHQW|UWpQKHWH]"  eUWHOPH]]H D] HO{EEL IHODGDWRW RO PyGRQ KRJ D] XWDVRNDW HJIRUPiQDNWHNLQWLVYiODV]ROMDPHJD]RWWIHOWHWWNpUGpVW"  7L]HQpJ

GLiN DQDOt]LVE{O YL]VJi]RWW 6]i] ÈUSiG 7DQiU ÒUQiO KiQIpOH HUHGPpQH OHKHW D YL]VJiQDN KD D]QDS FVDN  DV MHJHN V]OHWWHN"  +iQ SR]LWtY RV]WyMD YDQ D] Q HJpV] V]iP KD Q p α  LOO D] Q Sα  Sα   SNα " N  $]  ODSRV IUDQFLD NiUWiEyO DW RV]WyQDN  HPEHUQHN KiQIpOHNpSSHQOHKHWVpJH VH]"  +iQIpOHNpSSHQ OHKHW D  ODSRV PDJDU NiUWiEyO W NLYiODV]WDQLROPyGRQKRJPLQGDV]tQV]HUHSHOMHQOHJDOiEEHJV]HU"   -y]VLNiQDN  EDUiWMD YDQ  DONDORPPDO PHJKtY N|]ON KiUPDW +iQIpOHNpSSHQWHKHWLH]WPHJ~JKRJXJDQD]DWiUVDViJQHM|MM|Q|VV]H NpWV]HU"  5DM]ROMRQ  RODQ WpJODODSRW PHOHN ROGDODLQDN D KRVV]DL D] V]iPRNN|]ONHUOQHNNLPpJKR]]i~JKRJPLQGHJLN SRQWRVDQ HJV]HU OpS IHO  KD D WpJODODSRN HJIRUPD ROGDODLW HJV]HUHV PXOWLSOLFLWiVVDO V]iPROMXN  V D] |W WpJODODS PHJIHOHO{ PyGRQ HJPiV

PHOOpKHOH]YHHJ~MDEEWpJODODSRWDONRW 17. Hány négyjegyû ill ötjegyû számot írhatunk SiUDWODQV]iPMHJVHJtWVpJpYHORVV]iPUHQGV]HUEHQ fel 5 ill. 6. 18. Hány olyan ötjegyû szám van a tízes számrendszerben, melyben L DQHPIRUGXOHO{ LL OHJDOiEEHJSiURVV]iPMHJHWWDUWDOPD] LLL DpVDV]iPMHJHNHWWDUWDOPD]]D   HJiJDV V]iOORGDL V]REiED KiQIpOHNpSSHQ OHKHW HOKHOH]QL  WXULVWiW"  )HKpUIHNHWH ViUJD NpNSLURV pV ]|OG J|QJ|NE{O KiQIpOH  WDJ~ OiQFRW OHKHW FVLQiOQL" 0HQQL OHV] D]RQ OiQFRN V]iPD  DPHOHNEHQ legalább egy piros és legalább egy zöld színû gyöngy is van? 21. Piros,fehér,zöld és kék színû golyóink vannak 6 különbözô PpUHWEHQ 1pJ GRER]EDQ HOKHOH]QN KDWKDW JROyW JHOYH DUUD KRJ HJ dobozba különbözô méretû, de azonos színû golyók kerüljenek. Hányféle módon lehet 4 különbözô méretû és színû golyót kiválasztani a dobozokból. 22. Határozza meg a

hétjegyû számok közül azoknak a számát, amelyek L FVDNSiUDWODQ LL FVDNSiURV LLL SiURVpVSiUDWODQ LY SiURVpVSiUDWODQV]iPMHJHWWDUWDOPD]QDN $ODSRVPDJDUNiUWiEyOODSRWK~]XQN+iQIpOHNpSSHQOHKHW D]iV]NLUiOIHOV{DOVyWt]HVNLOHQFHVQROFDVVRUUHQGHWNLK~]QL  (J WiUVDViJEDQ  IpUIL pV  Q{ YDQ +iQIpOHNpSSHQ OHKHW {NHW HJNHUHNDV]WDON|Up~JOHOWHWQLKRJQHOM|QNpWQ{HJPiVPHOOHWW" 25. PHOHNEHQ Határozza meg azoknak az ötjegyû számoknak az összegét, L OHJIHOMHEED]V]iPMHJHNV]HUHSHOQHN LL D]V]iPRNOHJIHOMHEEHJV]HUIRUGXOQDNHO{ LLL OHJIHOMHEEDV]iPMHJHNiOOKDWQDN LY PHOHNQHNPLQGHQMHJHNO|QE|]{  +iURP IpUIL pV KiURP Q{L PDQ|NHQW KiQIpOHNpSSHQ OHKHW RO PyGRQ VRUED iOOtWDQL KRJ VHP NpW Q{ VHP NpW IpUIL QHP iOOKDW HJPiV PHOOHWW"   P IpUIL pV Q Q{ N|]O NW NLYiODV]WDQDN PLQGHJLN NLYiODV]WRWW PiVPiV

DMiQGpNRW NDS  +iQ RODQ HVHW OHV] DPLNRU D NLYiODV]WRWWDN N|]|WWSRQWRVDQOK|OJOHV]" 28. Adott a síkon n darab általános helyzetû egyenes ( nincs N|]|WWN  SiUKX]DPRV pV VHPHOLN KiURP QHP LOOHV]NHGLN HJ SRQWUD  +iQ WDUWRPiQUDERQWMiNDVtNRW" 29. Adott a 3 dimenziós euklideszi térben n általános helyzetû sík ( VHPHOLN NHWW{ QHP SiUKX]DPRV VHPHOLN KiURP QHP LOOHV]NHGLN HJ HJHQHVUH VHPHOLN QpJQHN QLQFV HJ N|]|V SRQWMD  +iQ UpV]UH ERQWMiN DWHUHW"  Q NO|QE|]{ WpQH]{E{O iOOy V]RU]DWRW KiQIpOHNpSSHQ OHKHW NpWNpWWpQH]{E{OiOOyWpQH]{NV]RU]DWiUDERQWDQL +iQIpOHNpSSHQOHKHW|WGREyNRFNiYDODWGREQL" +iQIpOHNpSSHQOHKHWKiURPGREyNRFNiYDOHWGREQL"  +iQIpOHNpSSHQ KHOH]KHWQN HO HJ  SROFRV V]HNUpQEH  N|QYHWKDHJSROFRQHOIpUPLQGD"  (J Ki]DVSiU KDW ~UEyO pV KDW K|OJE{O iOOy WiUVDViJRW KtY YHQGpJVpJEH RO PyGRQ KRJ KDWDQ D IpUM pV KDWDQ D

IHOHVpJ LVPHU{VHL +iQIpOHNpSSHQWHKHWLNH]WKDDIpUMQHN|WQ{pVKpWIpUILD IHOHVpJQHN KpWQ{pV|WIpUILLVPHU{VHYDQ"  +yIHKpUNH OHYHOHW tUW D KpW W|USpQHN $ JRQRV] ERV]RUNiQ D]RQEDQ |VV]HFVHUpOWH D OHYHOHNHW RO JDOiGXO KRJ VHQNL VHP D VDMiWMiW NDSWD+iQIpOHNpSSHQWHKHWWHPHJD]WDJRQRV]ERV]RUND  +iURPIpOH WpPiUyO OHYHOH]  WXGyV %iUPHOLN WXGyV EiUPHOLN PiVLNNDO OHYHOH] GH FVDN HJ WpPiUyO %L]RQ WVD EH KRJ YDQ N|]|WWN OHJDOiEEWXGyVDNLNXJDQDUUyODWpPiUyOOHYHOH]QHNHJPiVVDO  n + m  n  m  n  m   n  m %L]RQ WVDEHKRJ   =    +    +.+       k   0  k   1  k − 1  k  0  +iQ V]yWiUW NHOO NLDGQL KRJ N|]YHWOHQO OHKHVVHQ IRUGtWDQL NO|QE|]{QHOYEiUPHOLNpU{OEiUPHOPiVLNUD" +iQUDYpJ]{GLND111000 − 1V]iP" ( )

+DWiUR]]DPHJD][RQHJWWKDWyMiWD] 1 + x 2 − x 3 SROLQRPEDQ 7 V]iPN|]OKiQRODQYDQDPHO L QHPRV]WKDWyVHPYHOVHPPDO LL QHPRV]WKDWyVHPYHOVHPPDOVHPWHO LY QHPRV]WKDWyVHPYHOVHPPDOVHPWHOVHPWHO" 42. Az n elemû halmaznak, hány lineáris rendezése van? (JFVRPDJPDJDUNiUWiEyOKiQIpOHNpSSHQOHKHWNLYiODV]WDQL (i) négy páronként különbözô színû lapot, (ii) négy páronként különbözô színû és értékû lapot, LLL QpJRODWPHOHNN|]ONHWW{NLUiO"   $] XOWLQiO KiQIpOH OHRV]WiV OHKHWVpJHV"  +iURP JHUPHN N|]|WW V]pWRV]WXQN  GDUDE  IRULQWRV pUPpW +iQIpOHNpSSHQ OHKHW PHJFVLQiOQL D] HORV]WiVW L KD D] LV HO{IRUGXOKDW KRJ YDODPHOLN JHUHN HJ pUPpW VHP NDS LL KD EiUPHOLN JHUPHN OHJDOiEE HJ pUPpW NDS LLL KD EiUPHOLN JHUPHN OHJDOiEE KiURP pUPpW NDS"  +iQIpOHNpSSHQ K~]KDW IHO YDODNL D] HJLN NH]pQHN XMMDLUD  NO|QE|]{ gyûrût, ha a hüvelykujjára nem húz

gyûrût és ha bármely másik ujjára fel fér mind D    OiQ N|]|WW  Uy]ViW  tULV]W  DPDULOOLV]W  WXOLSiQW pV HJ RUFKLGHiW RV]WRWWDN V]pW RO PyGRQ KRJ PLQGHJLNN HJHJ YLUiJRW NDSRWW 0HQQL D OHKHWVpJHV HORV]WiVRN V]iPD"  $ N|QYHVSROFRQ  N|QY YDQ +iQIpOHNpSSHQ OHKHW N|]ON NLYiODV]WDQL  RODW PHO QHP HJPiV PHOOHWW iOO"  /HJHQ D] Q V]iP NDQRQLNXV DODNMD NO|QE|]{ SR]LWtY RV]WyLQDN D] |VV]HJpW p1α1 p2α 2 . pkα k  +DWiUR]]D PHJ D] Q 50. Hány olyan "szó" készíthetô a felejthetetlen szóból, amelyben e betûk QLQFVHQHN HJPiV PHOOHWW"  +iQIpOHNpSSHQ ERQWKDWXQN IHO HJ Q WHUPpV]HWHV V]iPRW KiURP WHUPpV]HWHV V]iP |VV]HJpUH" $ VRUUHQGHW LV ILJHOHPEH YpYH  $GRWW D VtNRQ D] H LOO I SiUKX]DPRV HJHQHVHN HQ P GDUDE IHQ Q GDUDE NO|QE|]{ SRQW YDQ +iQ RODQ QHP HOIDMXOy KiURPV]|J YDQ D VtNRQ PHOQHN D FV~FVDL D] DGRWW SRQWRN N|]O NHUOQHN NL"  (J QpJ]HW PLQGHQ ROGDOiW Q HJHQO{ UpV]UH RV]WXQN +iQ RODQ

KiURPV]|J YDQ DPHOQHN FV~FVDL D] HO{EE HPOtWHWW RV]WySRQWRN N|]O NHUOQHN NL" $GRWW D VtNRQ Q GDUDE HJHQHV DPHOHN N|]O QLQFV KiURP  PHO HJ SRQWUD LOOHV]NHGQH pV EiUPHO NHWW{ PHWV]L HJPiVW +iQ PHWV]pVSRQWMD YDQ D] Q GDUDE HJHQHVQHN" $GRWW D VtNRQ Q GDUDE SRQW PHOHN N|]O VHPHOLN  QLQFV HJ HJHQHVHQ +iQ HJHQHVpW KDWiUR]]iN PHJ D] HO{EE HPOtWHWW SRQWRN D VtNQDN"  $GRWW D KiURPGLPHQ]LyV WpUEHQ Q SRQW PHOHN N|]O VHPHOLN KiURP QLQFV HJ HJHQHVHQ N|]ON P YLV]RQW HJ VtNEDQ KHOH]NHGLN HO D PHJPDUDGW QP SRQW N|]O PiU VHPHOLN QpJ QHP NRPSODQiULV +iQ VtN LOOHV]WKHW{ D] DGRWW Q SRQWUD"  +iQ RODQ KiURPV]|J YDQ PHOQHN FV~FVDL HJEHHVQHN HJ DGRWW NRQYH[ Q V]|J FV~FVDLYDO  GH QLQFV N|]|V ROGDOXN"  .RPELQDWRULNDL ~WRQ LJD]ROMD KRJ L LLL  n  n  n 3   + 6  + 6  = n  1  2  3 LL  n  n  n 3 1 + 7  + 12  + 6  = (n + 1)  1  2  3 

n  n  n 4 1 + 14  + 36  + 24  = (n + 1) − n 4  1  2  3  n  n  n  n LY    + 14  + 36  + 24  = n 4   1  2  3  4  (XOHUJUiIRN+DPLOWRQXWDNpV+DPLOWRQN|U|N /HRQDUG (XOHU   QHYpKH] NDSFVROyGLN D] HOV{ JUiIHOPpOHWL PXQND PHO EDQ MHOHQW PHJ D 6]HQWSpWHUYiUL 7XGRPiQRV $NDGpPLD N|]OHPpQHLEHQ $] pUWHNH]pVpW (XOHU D] ~Q .|QLJVEHUJL KLGDN SUREOpPiMiYDO NH]GWH $ 3UHJHO IROy $ % V]LJHWHLW KLGDN N|W|WWpN |VV]H HJPiVVDO pV D -REE SDUW SDUWRNNDO LV $] $ V]LJHWHW NpW SiUKX]DPRV KtG N|W|WWH |VV]H D MREE SDUWWDO HJ KtG D % $ % V]LJHWWHO V XJDQFVDN NpW SiUKX]DPRV KtG YH]HWHW D] $UyO D EDO SDUWUD LV %W HJHJ KtG N|W|WWH |VV]H D EDO pV D MREE SDUWWDO LV pV %U{O %DO SDUW YH]HWHW HJ KtG $ UD LV  PHOHW D] HO{EE PiU HPOtWHWWQN $ NpUGpV D] YROW EH OHKHW H

MiUQL D KLGDNDW YDODPHO IL[ & SRQWEyO RO PyGRQ KRJ PLQGHQ KtGRQ iWPHJQN SRQWRVDQ HJV]HU (XOHU OpQHJpEHQWHOMHViOWDOiQRVViJEDQPHJROGRWWDDIHODGDWRW HILQtFLy $ G = ( E , ϕ ,V )  JUiI / pOVRUR]DWiW ϕ (e1 ) = (v0 , v1 ), ϕ (e2 ) = (v1 , v2 ),., ϕ (en ) = (vn −1 , vn ) W ]iUW (XOHUYRQDOQDN QHYH]]N KD ( PLQGHQ pOpW SRQWRVDQ HJV]HU WDUWDOPD]]D pV v0 = vn   KD v0 ≠ vn  DNNRU /W Q OW(XOHUYRQDOQDNPRQGMXN +D YDODPHO JUiIQDN YDQ ]iUW (XOHUYRQDOD V]RNiV D]W (XOHUJUiI QpYYHO LOOHWQL 1LOYiQ HJ (XOHUJUiI |VV]HIJJ{ pV EiUPHO FV~FVSRQWMiQDN D IRND SiURV PLYHO KD D] (XOHUYRQDOD EHWpU YDODPHO FV~FVSRQWED PLQG DQQLV]RU NL LV PHJ RQQDQ 0HJMHJH]]N KRJ YDQ DNL (XOHUJUiIQDN QHYH] RODQ JUiIRW DPHOQHN EiUPHO FV~FVIRND SiURV $ N|YHWNH]{WpWHOOpQHJpEHQ(XOHUW{OV]iUPD]LN (  7pWHO $ * JUiI DNNRU pV FVDN DNNRU (XOHUJUiI KD |VV]HIJJ{ pVEiUPHOFV~FViQDNDIRNDSiURV

%L]RQ WiV $] KRJ HJ (XOHUJUiI V]NVpJNpSSHQ |VV]HIJJ{ pV PLQGHQ FV~FVSRQWMiQDN D IRND SiURV D] UHPpOKHW{HQ YLOiJRV D WpWHO HO{WWL VRURNEyO $ IHOWpWHO HOpJVpJHV YROWiKR] WHNLQWVN D * JUiI YDODPHO Y FV~FViW$]  H pO YH]HVVHQ YEyO YEH V YE{O H YEH pV tJ WRYiEE YpJO HN HOYLV] YN YED PHUW KD YDODPHO FV~FVSRQWED EHPHQWQN D FV~FVSRQW IRNiQDN SiURV YROWD PLDWW NL LV WXGWXQN M|QQL +D D NDSRWW / pOVRUR]DWWDUWDOPD]]DD*JUiIYDODPHQQLpOpWDNNRUNpV]YDJXQN+DQHP WDUWDOPD]]DSpOGiXOD]H pOWpVXXH]HQpONpWYpJSRQWMDDNNRUXE{O LQGXOYD D] HO{EELHNKH] KDVRQOyDQ WDOiOXQN HJ XJDQFVDN XEHQ YpJ]{G{ / ]iUW YRQDODW +D X D] / ]iUW YRQDO YDODPHO pOpUH LV LOOHV]NHGHWW YDJ / YDODPHO PiVLN FV~FVSRQWMD LOOHV]NHGHWW /UH  DNNRU D] // ]iUW YRQDODNDWOHKHWHJHWOHQ]iUWYRQDOQDNWHNLQWHQL^+DD]/LOO/pOHLQHN QHP YROQD N|]|V FV~FVSRQWMD DNNRU /W

FVHUpOMN NL RO PyGRQ  KRJ HO{V]|U YH]HVVQN XE{O XWDW / YDODPHO FV~FVSRQWMiED RODQ XWDW DPHOQHN QLQFV N|]|V pOH /HO V H]W D] XWDW HJpV]tWVN NL D] /  ]iUW YRQDOOiD]HO{EELPyGRQ`+DQHPPDUDGWNLpONpV]YDJXQNKDLJHQDNNRU PHJLVPpWHOMND]HO{EELHOMiUiVWpVPLYHODJUiIXQNYpJHVHO{EEYDJXWyEE D]HOMiUiVXQNYpJHWpUpVPHJDGMDD*JUiIHJ]iUW(XOHUYRQDOiW (  7pWHO Ha a G egyszerû összefüggô gráfnak, 2k darab páratlan IRN~FV~FVSRQWMDYDQDNNRUpOHLOHIHGKHW{NNGDUDEQ OW(XOHUYRQDOODO  %L]RQ WiV(JpV]tWVNNLD*JUiIRWNGDUDEpOOHO YpROPyGRQ KRJ *  PLQGHQ FV~FViQDN D IRND SiURV OHJHQ H] QLOYiQ PHJWHKHW{ KD JHOQN DUUD KRJ D] ~M pOHNNHO PLQGLJ SiUDWODQ IRN~ FV~FVRNDW N|VVQN |VV]H* UHHNNRUWHOMHVHGQLIRJD](WpWHOIHOWpWHOHVH]pUWOHV] HJ ]iUW(XOHUYRQDODLVPHOWULYLiOLVDQWDUWDOPD]]DD]~MNGDUDEpOWLV +D D N GDUDE ~M pOW W|U|OMN N GDUDE Q OW

(XOHUYRQDODW NDSXQN 0LpUW QHPNDSKDWXQNNHYHVHEEHWNQiO" VDEL]RQ WiVH]]HONpV] 6LU 9LOOLDP 5RYDQ +DPLOWRQ   EHQ HJ RODQ MiWpNRW KR]RWWIRUJDORPEDPHOQHNDOpQHJHD]YROWKRJHJHO{UHPHJDGRWWJUiI FV~FVSRQWMDLW NHOOHWW EHMiUQL RO PyGRQ KRJ EiUPHO FV~FVEDQ SRQWRVDQ HJV]HUNHOOHWWMiUQLÈOOtWyODJDMiWpNQDNQHPYROWiWW{VLNHUH+DPLOWRQ NRUWiUVDLN|]|WW HILQtFLy $ G = ( E , ϕ ,V )  JUiI + ~WMiW ϕ (e1 ) = (v0 , v1 ), ϕ (e2 ) = (v1 , v2 ),., ϕ (en ) = (vn − 1 , vn ) W +DPLOWRQ~WQDN PRQGMXN KD v0 , v1 ,, vn FV~FVRN PLQG NO|QE|]{N pV H FV~FVSRQWRNRQ NtYO PiV FV~FVSRQWMD QLQFV * QHN HILQtFLy $ G = ( E , ϕ ,V )  JUiI . N|UpW +DPLOWRQN|UQHN PRQGMXN KD WDUWDOPD]]D*PLQGHQFV~FVSRQWMiWLV /iWV]yODJ QDJRQ KDVRQOy SUREOpPD KRJ YDODPHO JUiIQDN D] pOHLW MiUMXN EH SRQWRVDQ HJV]HU YDJ D FV~FVSRQWMDLW $] XWyEEL D]RQEDQ MyYDO QHKH]HEE 6 D] iOWDOiQRV HVHWEHQ

+DPLOWRQXWDN LOOHWYH +DPLOWRQN|U|N NHUHVpVpUHPDVHPLVPHUWLJD]iQMyDOJRULWPXV2SHUiFLyNXWDWiVWHUOHWpKH] WDUWR]LN D] XWD]y JQ|N SUREOpPiMD $] XWD]y JQ|N SUREOpPiMD D]W MHOHQWL KRJ D NHUHVNHGHOPL XWD]yQDN DGRWW YiURVRNDW NHOO EHMiUQLD RO PyGRQ KRJ PLQGHQ YiURVED FVDN HJV]HU PHJ HO pV YpJO YLVV]DWpU D FpJpQHN D V]pNKHOpUH (] HVHWEHQ D JUiI FV~FVSRQWMDL D] XWD]y iOWDO PHJOiWRJDWDQGy YiURVRN D] pOHN SHGLJ D YiURVRNDW |VV]HN|W{ ~WYRQDODN 7HUPpV]HWHVHQ HJHJ ~WQDN MyO PHJKDWiUR]RWW XWLN|OWVpJH LV YDQ V W|EE út esetén célszerû azt az utat választani, melynek a N|OWVpJH PLQLPiOLV +D YDODPHO * JUiI pOHLKH] YDOyV V]iPRNDW UHQGHOQN DNNRU KiOy]DWRNUyO IRODPRNUyO EHV]pOQN 6 QDJRQ WHUPpV]HWHVHQ YHW{GLN IHO PLQLPiOLV költségûLOO maximális nyereségû utak   HVHWOHJ N|U|N NHUHVpVH $] HO{EE HPOtWHWW IHODGDWRN D NRPELQDWRULNXV RSWLPDOL]iOiV WiUJN|UpEH WDUWR]QDN

$N|YHWNH]{ WpWHO PHJIRJDOPD]iVD HO{WW HPOtWMN PHJ KRJ HJ N|U LOO ~W KRVV]iQDEHQQNV]HUHSO{pOHNV]iPiWpUWMN + 7pWHO Ha a G egyszerû gráfban bármely csúcspont foka legalább k k ≥ 2 DNNRUYDQDJUiIEDQHJOHJDOiEENKRVV]~ViJ~N|U  %L]RQ WiV /HJHQ D * JUiIQDN D] / ~W DOHJKRVV]DEE~WMD6H]HQ~WFV~FVSRQWMDLWD NH]G{ SRQWWyO LQGXOYD MHO|OMH UHQGUH v0 , v1 ,., vk , vk +1 ,, vn $]KRJYIRND OHJDOiEE N D]W MHOHQWL KRJ D YW YHO |VV]HN|W{ H pOHQ NtYO PpJ OHJDOiEE N pO LQGXO NL Y EyO (]HQ pOHN PiVLN YpJSRQWMDL szükségszerûen szerepelnek L csúcspontjai N|]|WWPHUWHOOHQNH]{HVHWEHQ|VV]HWN|]pVEH NHUOQpQN D]]DO KRJ D] / ~W D OHJKRVV]DEE /HJHQ H  PiVLN YpJSRQWMD PRQGMXN Y H  YpJSRQWMD Y pV YpJO HN YpJSRQWMD YN (NNRU D] / ~WQDN D YWyO YNLJ WDUWy UpV] ~WMiQDN NpW YpJSRQWMiWN|WL|VV]HHN H]pUWHJN|UWNDSXQNPHOEHQOHJDOiEENpO

YDQVH]]HODEL]RQ WiVNpV] Y H Y H Y H H H H Y YN HN + 7pWHO +D D G = ( E , ϕ ,V ) egyszerû gráf bármely v csúcsának fokára WHOMHVOKRJ δ (v ) ≥ V 2 = n DNNRU*|VV]HIJJ{ 2 %L]RQ WiV /HJHQ X pV Y NpW NO|QE|]{ FV~FVD *QHN $ IHOWpWHO V]HULQW XYDO pV YYHO LV OHJDOiEE Q Q SRQW YDQ |VV]HN|WYH D] XEyO LOOHWYH YE{O LQGXOy pOHN iOWDO D IRNV]iP IHOWpWHO PLDWW $] HO{EE HPOtWHWW XYDO LOOHWYH YYHO N|]YHWOHQO |VV]HN|W|WW SRQWRN N|]|WW YDQ RODQPHOXYDOLVYYHOLV|VV]HYDQN|WYH KDQHPOHQQHLOHQDNNRU* FV~FVDLQDN D V]iPD QDJREE HJHQO{ YROQD PLQW >QQ@  D]D] X pV Y N|]|WWYH]HW~W +D DGRWW D G = ( E , ϕ ,V )  JUiI D FV~FVDLQDN D V]iPiW V = n  V]RNiV * UHQGMpQHNPRQGDQLVpOHLQHNV]iPiW E = q D*JUiIPpUHWpQHNPRQGDQL+DD] XW D] H pO |VV]HN|WL D Y FV~FVVDO DNNRU XW LOO YW D] H pO YpJ SRQWMDLQDN QHYH]]N pV XW LOO YW

V]RPV]pGRVQDN PRQGMXN $] X FV~FVSRQWWDOV]RPV]pGRVFV~FVRNKDOPD]iW1 X YDOMHO|OMN + 7pWHO 22UH  +DD*JUiIUDWHOMHVOKRJUHQGMHQ≥pV EiUPHO NpW QHP V]RPV]pGRV XY FV~FVSRQW IRNiQDN D] |VV]HJH QDJREE HJHQO{*UHQGMpQpO δ (X) + δ (Y) ≥ Q DNNRUQHNYDQ+DPLOWRQN|UH %L]RQ WiV ,QGLUHNW EL]RQ WXQN $]RQ JUiIRN N|]O PHOHNUH D WpWHO IHOWpWHOHL WHOMHVHGQHN GH D] iOOtWiV QHP WHNLQWVN YDODPHOLNHW D]RQ *  JUiIRN N|]O PHOQHN D] pOHLQHN D V]iPD PD[LPiOLV 0D[LPiOLV DEEDQD]pUWHOHPEHQKRJKD* KH]KR]]iYHVV]QNHJRODQHpOWPHOD QHP V]RPV]pGRV X pV Y pOHNHW N|WL |VV]H DNNRU D] tJ NDSRWW * JUiI PiU WDUWDOPD]QL IRJ +DPLOWRQN|UW *  PLQGHQ +DPLOWRQ N|UH WDUWDOPD]]D D] H pOW H]pUW YDQ RODQ / +DPLOWRQ~WMD * QHN PHO XW pV YW N|WL |VV]H OHJHQ H] D] ~W  PHJDGYD ϕ (e1 ) = (v0 , v1 ), ϕ (e2 ) = (v1 , v2 ),., ϕ (en ) = (vn − 1 , vn )  u = v0 , v = vn iOWDO$ v 0 ,

v1 , . , v k , v k + 1 , , v n FV~FVSRQWRNNDONDSFVRODWEDQYHJNpV]UH KRJ KD YNV]RPV]pGRVXYDOD]D]YNHOHPH1 X QDNDNNRUYNQHPHOHPH1 Y QHN (OOHQNH]{HVHWEHQDv0 , vk +1 , vk + 2 ,., vn , vk , vk −1 ,, v0 +DPLOWRQN|UHYROQD* QHN7HKiW D 9^Y` SRQWRN N|]O D] XYDO V]RPV]pGRV SRQWRN QHP  V]RPV]pGRVDN YYHO  H]pUW δ (u) ≤ (n − 1) − δ (v )  V H] XWyEEL HJHQO{WOHQVpJ HOOHQWPRQG D WpWHO IHOWpWHOHLQHN .|YHWNH]PpQ *$ LUDF   Ha az n=2k csúcspontú egyszerû G JUiIEiUPHOSRQWMiQDNDIRNDOHJDOiEENDNNRUYDQ*QHN+DPLOWRQN|UH Az idõrendben való jobb tájékozódás végett egységes jelölés mellett IHOVRUROMXND+DPLOWRQN|U|NUHYRQDWNR]ypUGHNHVHEEHUHGPpQHNHW-HO|OMH D* (ϕ9 JUiIFV~FVSRQWMDLQDNIRNV]iPDLWUHQGUH d1 ≤ d 2 ≤. ≤ d n  |9| Q +DD * (ϕ,V) egyszerû gráfra (2<n) a következô feltételek valamelyike WHOMHVHGLNDNNRUYDQ*QHN+DPLOWRQN|UH *$LUDF  1 ≤ k ≤ n

⇒ d k ≥ 21 n. 22UH   u, v ∈V , de (u, v ) ∉ E ⇒ δ (u) + δ (v ) ≥ n  3yVD/DMRV  1 ≤ k ≤ 1 n ⇒ dk > k . 2 -$%RQG  MN d j , d k ≤ k − 1 ⇒ d j + d k ≥ n. 9&KYiWDO   d k ≤ k  21 n ⇒ d n − k ≥ n − k  9DOyEDQ *EHQ OpWH]LN +DPLOWRQN|U PLYHO D N|YHWNH]PpQ IHOWpWHOHL OpQHJpEHQV]LJRU~EEDNPLQWD + WpWHOIHOWpWHOHL HILQLFLy$*JUiI UpV]JUiIMiWNDGIRN~IDNWRUiQDNPRQGMXNKD L * FV~FVDLQDNKDOPD]DPHJHJH]LNFV~FVDLQDNKDOPD]iYDO LL * EiUPHOFV~FVDD]RQRVIRNV]iP~ $ GHILQtFLyEyO OiWKDWy KRJ YDODPHO * JUiIQDN D . +DPLOWRQN|UH  $ PHOOpNHOW HJEHQ PiVRGIRN~ IDNWRUD *QHN iEUiQOiWKDWyJUiIQDNYDVWDJV]DJJDWRWWLOOHWYHYpNRQYRQDOODOMHO|OWN HJHJ HOV{IRN~ IDNWRUiW (OOHQ{UL]]H OH D .HGYHV 2OYDVy KRJ D KiURP HOV{IRN~ IDNWRU N|]O EiUPHO NHWW{ V]RU]DWD D] iEUiQ OiWKDWy JUiIQDN HJHJ PiVRGIRN~ IDNWRUiW DGMD GH D JUiIQDN QLQFV

+DPLOWRQN|UH GH  D keletkezõ körök természetesen lefedik G csúcsait. 7pWHO Ha a G egyszerû összefüggõ gráfnak van olyan k csúcsa, melyek W|UOpVHXWiQNNRPSRQHQVpUHHVLNV]pWDNNRU*QHNQLQFV+DPLOWRQN|UH %L]RQLWiV Indirekt bizonyitunk. Elegendõ arra gondolni, hogy egy N|UNGDUDESRQWMiQDNW|UOpVHXWiQOHJIHOMHEENUpV]UHHVKHWV]pW 7pWHO Ha a G egyszerû osszefüggõ gráfnak van olyan k pontja melyek W|UOpVH XWiQ N NRPSRQHQVUH HVLN V]pW DNNRU *QHN QLQFV +DPLOWRQ~WMD VSHUV]HPpJNHYpVEpYDQ+DPLOWRQN|UH   %L]RQLWiV,QGLUHNWEL]RQLWXQNWHJNIHOKRJ*QHND]/KDPLOWRQ ~WMDD]D] /UH LOOHV]NHGLN * PLQGHQ FV~FV SRQWMD %iUPHO ~W LJ SHUV]H / LV N GDUDE SRQWMiQDN D W|UOpVpYHO OHJIHOMHEE N UpV]UH ERPOLN V H] HOOHQWPRQG  D WpWHO IHOWHYpVpQHN  PHO V]HULQW OHJDOiEE  N UpV]UH NHOOHQHERPROQLD HILQLFLy /HJHQ D * JUiIQDN G1 , G2 ,., Gk  UHQGUH m1 , m2 ,, mk DG IRN~ IDNWRUDLKD L

KDEiUPHOLMHVHWpQ*LQHNLOOMQHNQLQFVN|]|VpOH LL  D G1 , G2 ,., Gk  UpV]JUiIRN HJWWYpYH WDUWDOPD]]iN * |VV]HV pOpW DNNRU*H]HQNV]iP~IDNWRUV]RU]DWiQDNPRQGMXN *DNRUROMKiWpVW|UHNHGMPLQWDUpJLHN KRJD]~MDWPHJUDJDGKDVGOHJI{EEV]DEiORGH] OHJHQ.XQJ)XFH/XQM,,N|QY IHMH]HW )HODGDWRN  ,JD]ROMD KRJ KD HJ pOW LV WDUWDOPD]y * JUiI PLQGHQ SRQWMiQDN IRNDSiURVDNNRUNLMHO|OKHW{NDJUiIEDQN|U|N~JKRJDJUiIPLQGHQpOH HN|U|NN|]OSRQWRVDQHJEHQV]HUHSHOMHQ  %L]RQ WVD EH KRJ KD D] H pO D] |VV]HIJJ{ * JUiIQDN KtGMD DNNRU * QHP WDUWDOPD] RODQ N|UW PHOEHQ D] H pO V]HUHSHO  HILQtFLy V]HULQWD*|VV]HIJJ{JUiIQDND]HpOpWKtGQDNPRQGMXNKDHW|UOpVpYHOD *E{ONDSRWWJUiIPiUQHP|VV]HIJJ{ %L]RQ WVDEHKRJKDD * |VV]HIJJ{ JUiIQDN QLQFV RODQ N|UH DPHOD]HpOWWDUWDOPD]]DDNNRUHKtGMD*QHN  ,JD]ROMD KRJ KD D * LUiQ WRWW JUiI QHP UHV pV EiUPHO Y

SRQWMiUD δ be (v ) = δ ki (v ) DNNRU*OHIHGKHW{N|U|NNHOROPyGRQKRJEiUPHOpO SRQWRVDQHJN|UEHQV]HUHSHO  %L]RQ WVD EH KRJ D WHOMHV JUiI WHWV]{OHJHV LUiQ WiVD PHOOHWW OpWH]LN RODQ Y SRQWMD PHOE{O EiUPHO PiVLN SRQWKR] YH]HW OHJIHOMHEE NHWW{KRVV]~ViJ~~W  0XWDVVD PHJ KRJ EiUPHO * LUiQ WRWW JUiIEDQ D FV~FVRN NLIRNDLQDNLOOEHIRNDLQDN|VV]HJHD]pOHNV]iPiYDOHJH]LNPHJ 7; Bizonyítsa be, hogy bármely hidat nem tartalmazó összefüggõ G JUiI LUiQ WKDWy RO PyGRQ KRJ HU{VHQ |VV]HIJJ{ OHJHQ  $ * LUiQ WRWW JUiI HU{VHQ |VV]HIJJ{ KD EiUPHO SRQWMiEyO EiUPHO PiVLN SRQWMiEDYH]HWLUiQ WRWW~W 0XWDVVDPHJKRJLJD]DND]DOiEELiOOtWiVRN L +D*QHPUHVJUiI|VV]HIJJ{pVEiUPHOYSRQWMiUD δ be (v ) = δ ki (v ) DNNRU*QHNYDQLUiQ WRWW(XOHUYRQDOD LL +DD*QHPUHVLUiQ WRWWJUiIQDNYDQLUiQ WRWW(XOHUYRQDOD DNNRU*EiUPHOYSRQWMiUD δ be (v ) = δ ki (v ) pV|VV]HIJJ{

0XWDVVDPHJKRJKDD*JUiIQHPUHVpV|VV]HIJJ{DNNRUpOHL EHMiUKDWyN RO PyGRQ KRJ PLQGHQ pOHQ NpWV]HU PHJQN YpJLJ pV YLVV]D WpUQN D NLLQGXOiVL SRQWED $] pOHN EHMiUiVD ~J LV HOYpJH]KHW{ KRJ PLQGHQpOWPLQGNpWLUiQEDQSRQWRVDQHJV]HUMiUXQNEH   /HJHQ D * JUiI RODQ UpV]JUiIMD QHN PHO WDUWDOPD]]D D  Y FV~FVSRQWMiW pV * (XOHUJUiI IHOWHVV]N PpJ KRJ  YE{O WHWV]{OHJHVHQ EHMiUKDWy 7|U|OMN * pOHLW pV D YLVV]DPDUDGW L]ROiOW SRQWMDLW QHN D PHJPDUDGW JUiIRW MHO|OMH * 0XWDVVD PHJ KRJ  pV  LV YE{O WHWV]{OHJHVHQ EHMiUKDWy  $ * JUiIRW YE{O WHWV]{OHJHVHQ EHMiUKDWyQDN PRQGMXNKDYE{OLQGXOYDpVPLQGLJEHQHPMiUWpOHQKDODGYDV]NVpJNpSSHQ *QHNYDODPHO(XOHUYRQDOiWNDSMXN 0XWDVVDPHJKRJKDSiURVV]iP~XWDW~JNDSFVROXQN|VV]HKRJ NH]G{SRQWMXNXUDYpJSRQWMXNYUHLOOHV]NHGLNpVXLOOYNtYOPiVN|]|V SRQWMXN QLQFV DNNRU PLQG XEyO PLQG YE{O WHWV]{OHJHVHQ

EHMiUKDWy JUiIRW NDSXQN0XWDVVDPHJKRJEiUPHOXEyOLOOYE{OWHWV]{OHJHVHQEHMiUKDWy *JUiIHO{iOOtWKDWyD]HO{EELPyGRQ  ,JD]ROMD KRJ D NHWW{QpO W|EE SRQWMXNEyO WHWV]{OHJHVHQ EHMiUKDWy*JUiIRNN|U|N  -HO|OMH D * LUiQ WRWW JUiI FV~FVDLW UHQGUH v 0 , v1 , . , v k , v k + 1 , , v n  i =n PXWDVVDPHJKRJD ∑ δ ki (vi ) − δ be (vi ) V]iPSiURV i=0  9L]VJiOMD PHJ KRJ D [HV VDNNWiEOiW EH OHKHW H MiUQL HJHWOHQ OyYDO OyXJUiVRNNDO RO PyGRQ KRJ PLQGLJ RODQ PH]{UH OpSQN PHOHQ NRUiEEDQ PpJ QHP MiUWXQN  7HWV]{OHJHVHQ YiODV]WRWW PH]{U{O LQGXOKDWXQN  9pJLJ OHKHW H MiUQL D] [|V VDNNWiEOiW D] HO{EE HPOtWHWW PyGRQ"  %L]RQ WVXN EH KRJ KD HJ WiUVDViJQDN EiUPHO WDJMD LVPHU D WiUVDViJEyO OHJDOiEE N HPEHUW DNNRU N|]ON OHOWHWKHW{ HJ NHUHN DV]WDO PHOOp OHJDOiEE N V]HPpO RO PyGRQ KRJ PLQGHQNLQHN D NpW V]RPV]pGMD LVPHU{VH LV HJEHQ  )HOWpWHOH]]N KRJ N≥

pV D] LVPHUHWVpJHN N|OFV|Q|VHN  %L]RQ WVD EH KRJ KD D] HO{EEL IHODGDWEDQ HPOtWHWW WiUVDViJ  I{E{O iOO pV N  DNNRU PLQG D KDWDQ OHOWHWKHW{N HJ DV]WDO PHOOp D] HO{]{IHODGDWIHOWpWHOHLQHNPHJIHOHO{HQ  /HJHQ D * JUiI FV~FVSRQWMDLQDN D V]iPD Q≥ 0XWDVVD PHJ KRJ ha az n pontú egyszerû gráfban bármely ((n-1)/2)>k pozitív egész k-ra a kQiO QHP QDJREE IRN~ SRQWRN V]iPD NHYHVHEE PLQW N DNNRU D * JUiI |VV]HIJJ{ 19; Mutassa meg ha a egyszerû összefüggõ G gráf K körének bármely e pOpQHNW|UOpVHXWiQD*OHJKRVV]DEE~WMiWNDSMXNDNNRU.+DPLOWRQN|UH* QHN 20; Igazolja, hogy ha egy n csúcspontú egyszerû gráf bármely OHJKRVV]DEE~WMiQDNYpJSRQWMDLIRNV]iPDLQDN|VV]HJHQDNNRUDOHJKRVV]DEE XWDNN|]|WWYDQRODQPHOQHNDYpJSRQWMDLV]RPV]pGRVDN  0XWDVVD PHJ KRJ KD YDODPHO VDNN YHUVHQHQ PLQGHQNL PLQGHQNLYHO HJV]HU PpUN{]|WW pV G|QWHWOHQ QHP YROW DNNRU D YHUVHQ]{N VRUED UHQGH]KHW{N

RO PyGRQ KRJ PLQGHQNL J{]|WW D] XWiQD N|YHWNH]{ HOOHQ  %L]RQ WVD EH KRJ D OHJDOiEE  SRQW~ WHOMHV JUiIQDN EiUPHO LUiQ WiVDPHOOHWYDQLUiQ WRWW+DPLOWRQ~WMD ,UiQ WVDD]V]|JSRQW~WHOMHVJUiIRWROPyGRQKRJQHOHJHQ DNDSRWWJUiIQDNLUiQ WRWW+DPLOWRQN|UH 24. Rajzoljon olyan 6 pontú 11 élû egyszerû gráfot melynek nincs +DPLOWRQN|UH   +HOH]]HQ HO D] RNWDpGHU PLQGHQ ODSMiUD HJHJ D ODSRW SRQWRVDQ IHG{ WHWUDpGHUW 0XWDVVD PHJ KRJ D] tJ OpWUH M|WW WHVW pOKiOy]DWiEyOiOOyJUiIQDNQLQFVHQVHP+DPLOWRQN|UHVHP+DPLOWRQ~WMD  +iQ +DPLOWRQN|UH YDQ D WHWUDpGHU LOO KH[DpGHU NRFND JUiIMiQDN 27; Ha egy összefüggô gráf nem egyrétûen járható be (tehát legalább QpJ SiUDWODQ IRN~ FV~FVRW WDUWDOPD]  DNNRU OHJDOiEE NpW NO|QE|]{ PLQLPiOLV OHIHGpVH YDQ  $ OHKHW{ OHJNHYHVHEE YRQDOEyO iOOy OHIHGpVHLW HJ JUiIQDN PLQLPiOLV OHIHGpVQHN PRQGMXNpV HJ YRQDO KDOPD] OHIHG{ KD D

JUiIPLQGHQpOpWOHJDOiEEHJV]HUWDUWDOPD]]D  6]HSDUiOyKDOPD]RNV]pWYiJyKDOPD]RNYiJiVRNSiURV JUiIRN $ OpSFV{NHW V]HPE{O PiVV]XN PHJ PLYHO KiWUiOYD YDJ ROGDOD]YD LJHQ NpQHOPHWOHQ YROQD -XOLR &RUWi]DU $] |VV]HIJJ{ SDUNRN 8WDVtWiVRN D OpSFV{ PHJPiV]iViKR]  .ULWHULRQ  R *DNUDQ YDQ DUUD V]NVpJQN KRJ YDODPHO  JUiI RODQ UpV]JUiIMiUyO EHV]pOMQN PHOHW G = ( E , ϕ ,V )  E{O YDODPHO pOHLQHN HOKDJiViYDONDSWXQN+DDW|U|OWpOHNKDOPD]iW)MHO|OLDNNRU DYLVV]DPDUDGWUpV]JUiIRWU|YLGHQG = ( E − F , ϕ ,V ) HOMHO|OMN HILQtFLy $ G = ( E , ϕ ,V ) egyszerû összefüggô gráf éleinek F UpV]KDOPD]iW V]HSDUiOy KDOPD]QDN PRQGMXN KD D G = ( E − F , ϕ ,V )  JUiI QHP|VV]HIJJ{ 1HP UHV V]HSDUiOy KDOPD] PLQGLJ OpWH]LN KD OHJDOiEE NpW FV~FVDYROWD]|VV]HIJJ{*JUiIQDNPLYHOEiUPHOJUiIHVHWpQ * |VV]HV pOHLQHN D KDOPD]D WULYLiOLVDQ V]HSDUiOy KDOPD] $ G = ( E , ϕ ,V )

JUiIFV~FVDL9KDOPD]iQDNQHPUHVUpV]KDOPD]DL:pV: OHJHQHNDGRWWDN:pV: UpV]KDOPD]RNUDWHOMHVHGMHQPpJKRJ : 9: $]D]:: GLV]MXQNWDNpVXQLyMXN9 HILQtFLy $ G = ( E , ϕ ,V ) egyszerû összefüggô gráf éleinek F UpV]KDOPD]iW:: UHYRQDWNR]yODJV]pWYiJyKDOPD]QDNPRQGMXNKD )HOHPHL:SRQWMDLWN|W|WWpN|VV]H: SRQWMDLYDO 7pWHO $ G = ( E , ϕ ,V ) egyszerû gráf, akkor és csak akkor |VV]HIJJ{KD9WQHPOHKHWIHOERQWDQL:: QHPUHVGLV]MXQNW UpV]KDOPD]RN XQLyMiUD RO PyGRQ KRJ        ha ∀e ∈ E é s ϕ (e) = (v1 , v2 ) ⇒  (v1 , v2 ∈W ) vagy (v1 , v2 ∈W )    %L]RQ WiV$WpWHOXWROVyVRUiQDNDIRUPXOiMiEDQV]HUHSO{ YDJ ~Q NL]iUy YDJ $ WpWHO XWROVy VRUD YpJO LV D]W PRQGMD KRJ QLQFV RODQ pO PHO : YDODPHO SRQWMiW N|WQp |VV]H : SRQWMiYDO 0iV V]yYDO KD OpWH]QHN D WpWHOEHQ HPOtWHWW WXODMGRQViJRNNDO UHQGHONH]{ : :  KDOPD]RN DNNRU * QHP

|VV]HIJJ{ +D XJDQLV * |VV]HIJJ{ YROQD DNNRU OpWH]QH :E{O LQGXOy: EHQYpJ]{G{~W6D]~WQDNOHJDOiEEHJRODQHpOH DPHOQHNHJLNYpJSRQWMD:EHPiVLN: EHHVQH )RUGtWYD KD * QHP |VV]HIJJ{ DNNRU OHJDOiEE NpW NRPSRQHQVHYDQ/HJHQD]HJLN G1 = ( E1 , ϕ1 ,V1 ) KD: 9QHNpV: 9 9 QHNYiODV]WMXNDNNRUOiWKDWyDNRPSRQHQVGHILQtFLyMDPLDWW QLQFVRODQHpOPHO:WN|WQp|VV]H: YHO  HILQtFLy$*JUiI)V]HSDUiOyKDOPD]iWYiJiVQDNQHYH]]N KD ) QHN QLQFV RODQ YDOyGL )  UpV]KDOPD]D DPHO V]LQWpQ * V]HSDUiOyKDOPD]DYROQD 1LOYiQ D]W LV PRQGKDWQiQN KRJ D YiJiV PLQLPiOLV V]HSDUiOiV +D YDODPHO ) V]HSDUiOy KDOPD] D * JUiIRW  YDJ W|EE NRPSRQHQVUH ERQWRWWD IHO DNNRU ) QHP OHKHW YiJiV PHUW EiUPHO H )EpOL pOUH )^H` V]HSDUiOy KDOPD] 8JDQLV D] H OHJIHOMHEENpWNRPSRQHQVWN|W|VV]H 9HJNpV]UHD]WLVKRJHJYiJiVV]NVpJNpSSHQV]pWYiJy KDOPD] LV GH IRUGtWYD QHP LJD] 9DQ RODQ * JUiI

pV RODQ ) V]pWYiJyKDOPD]D*QHNPHOQHPYiJiV0XWDVVRQOHJDOiEEHJHW $IHQWLHNV]HULQWLJD]D]DOiEELiOOtWiV 7pWHO $ * |VV]HIJJ{ JUiI EiUPHO IHV]tW{ IiMiQDN YDQ OHJDOiEEHJN|]|VpOH*EiUPHOV]pWYiJyKDOPD]iYDO 0HJMHJ]pV 9HJN pV]UH D * JUiI 7 IHV]tW{ IiMD RODQ PLQLPiOLVDQ |VV]HIJJ{ UpV]JUiIMD *QHN PHO  FV~FVDLW |VV]HN|WL$*JUiIQDN)V]pWYiJyKDOPD]DSHGLJRODQPLQLPiOLV KDOPD]DpOHNQHNPHO*EL]RQRVFV~FVDLWHOYiODV]WMDHJPiVWyO Emlékezzünk arra is , hogy a G egyszerû összefüggô gráf T IHV]tW{IiMDRODQPD[LPiOLVDQ|VV]HIJJ{UpV]JUiIMD*QHNPHO QHPWDUWDOPD]N|UW 7pWHO &DOH  $] Q V]|JSRQW~ .Q WHOMHV JUiI NO|QE|]{ IHV]tW{IiLQDNDV]iPDQQ $ WpWHO N|]LVPHUW EL]RQ WiVDL NLVVp NRPSOLNiOWDEEDN D] iWODJQiOD]pUWD]WLWWPHOO{]]N .UXVNDODOJRULWPXV Legyen adott egy G egyszerû összefüggô JUiI pV OHJHQHN D] pOHL V~OR]RWWDN $ G = ( E , ϕ ,V )   JUiI pOHL V~OR]RWWDN KD * EiUPHO H

pOpKH] KR]]i YDQ UHQGHOYH HJ Z YDOyVV]iP6RNIHODGDWQiODV~ONpQWV]HUHSO{YDOyVV]iPRNQHP QHJDWtYDN $ .UXVNDODOJRULWPXV YpJO LV DUUD YDOy KRJ PHJKDWiUR]]D HJ V~OR]RWW JUiI PLQLPiOLV IHV]tW{ IiMiW * YDODPHO IHV]tW{ IiMiW PLQLPiOLVQDN PRQGMXN KD D] ) pOHLKH] UHQGHOWV~ORN|VV]HJHPLQLPiOLVD]D]*EiUPHOPiV) IHV]tW{ IiMD HVHWpQ D] )  pOHLKH] WDUWR]y V~ORN |VV]HJH QDJREE YDJ HJHQO{ PLQW D] ) pOHLKH] WDUWR]y V~ORN |VV]HJH )RUPXOiYDO OHtUYD D] HO{EELW ∑ w(ei ) ≤ ∑ w(ei )  WHOMHVO * EiUPHO )  IHV]tW{ ∀ei ∈E ( F ) ∀ei ∈E ( F ) IiMiUD DKRO ( )  LOO ( )  MHO|OL ) LOO )  pOHLQHN D KDOPD]iW $ .UXVNDO DOJRULWPXV OpQHJH U|YLGHQ D N|YHWNH]{ 9iODVV]XN HO{V]|U * pOHL N|]O  ( E{O  D PLQLPiOLV V~O~W HW $ PiVRGLN OpSpVEHQ ( ( * ^H`E{O YiODVV]XN D HW JHOYH DUUD KRJ D] H H pOHN QH DONRVVDQDN *EHQ N|UW 6  iOWDOiEDQ D] DOJRULWPXV NLN OpSpVH

DEEyO iOO KRJ D] E k = E (G ) − {e1 , e2 ,., ek −1}  pO KDOPD]EyO YiODVV]XQN HJ RODQ PLQLPiOLV V~O~HNWPHODPiUNLYiODV]WRWW e1 , e2 ,., ek −1 pOHNNHOHJWWQHP DONRW N|UW *EHQ +D D PRQGRWW WXODMGRQViJJDO UHQGHONH]{ H pO QHP OpWH]LN DNNRU D] DOJRULWPXV YpJHW pUW $ NRQVWUXNFLyEyO QLOYiQYDOy KRJ D] HUHGPpQO NDSRWW ) ID JUiI IHV]tW{ IiMD *QHN ) PLQLPDOLWiViW LQGLUHNW ~WRQ PXWDVVXN PHJ 7HJN IHO KRJD]) IHV]tW{IDpOHLKH]UHQGHOWV~ORN|VV]HJHNLVHEEPLQW D])KH]UHQGHOWHN|VV]HJHpV)QHNpV) QHND]pOHLLVV~OXN QDJViJDL V]HULQW VRUED UHQGH]HWWHN D]D] w(e1 ) ≤ w(e2 ) ≤. ≤ w(en −1 )  LOO w(e1 ) ≤ w(e2 ) ≤. ≤ w(en − 1 )  (] D]W MHOHQWL KRJ OHJDOiEE HJ pON NO|QE|]LN /HJHQ D] D VRUUHQGEHQ D] HOV{ SO HM H] D]W MHOHQWHQp KRJ QHP D PLQLPiOLV V~O~ pOW YiODV]WRWWXN D MLN OpSpVEHQVH]HOOHQWPRQGiV 7pWHO (J * |VV]HIJJ{ JUiIEDQ EiUPHO ) V]pWYiJy KDOPD]

EiUPHO3]iUWYRQDOQDNSiURVVRNpOpWWDUWDOPD]]D %L]RQ WiV /HJHQ DGRWW D * JUiI FV~FVDLQDN KDOPD]D NpW QHPUHV:: GLV]MXQNWUpV]KDOPD]DLQDNXQLyMD6D])V]pWYiJy KDOPD]D *QHN :: UH YRQDWNR]yODJ pV OHJHQ DGRWW HJ 3 ]iUW pOVRUR]DWD *QHN ,QGXOMXQN HO YDODPHO 3EHOL FV~FVSRQWEyO PHO HJEHQ :QHN LV HOHPH +D 3 YDODPHO H pOH iWPHJ : EH DNNRU D ]iUWViJ PLDWW RODQ H pO LV OHV] DPHOLNNHO YLVV]DMXWXQN:EH+DDWRYiEELEDUDQJROiVXQNVRUiQ~MyODJ: EH EyNOiV]QiQN H pOHQ D ]iUWViJ PLDWW LVPpW :EH NHOO WpUQQN YDODPHOH pOOHOpVtJWRYiEEDPtJYpJLJQHPSRURV]NiOXQND 3 ]iUW YRQDO YDODPHQQL pOpQ $] ) KDOPD] V]pWYiJy YROWD PLDWW D]HH HH HNHN pOHNHOHPHL)QHNLJD]WHKiWDWpWHO 1pKiQ ROGDOODO HO{EE PiU EHV]pOWQN HJHJ pUGHNHVHEE JUiIUyOPLQWSpOGiXOD]QFV~FVSRQW~WHOMHVJUiIUyO$V]pWYiJy KDOPD]NDSFViQPHJHPOtWMNDNSDUWLFLRQiOKDWyJUiIRNDW HILQtFLy $ G = ( E , ϕ ,V ) 

JUiIRW N SDUWLFLRQiOKDWyQDN PRQGMXN KD PHJDGKDWy 9QHN RODQ 9 = 9 ∪ 9 ∪∪9 N  RV]WiOR]iVD DKRO D 99  9 N  KDOPD]RN HJLNH VHP UHV pV QLQFV RODQ pO PHOQHN PLQGNpWYpJSRQWMDXJDQD]RQ9LKDOPD]EDQYROQD 3iURVJUiIRN $JDNRUODWEDQpVD]HOPpOHWEHQLVNLWQWHWHWWV]HUHSHYDQ DN HVHWQHNPiVQpYHQDSiURVJUiIRNQDN HILQtFy $ G = ( E , ϕ ,V ) W SiURV JUiIQDN PRQGMXN KD 9 IHOERPOLN NpW QHP UHV GLV]MXQNW UpV]KDOPD]iUD 9 = 9 ∪ 9  DKRO QLQFVRODQH pO PHOUH D] WHOMHVHGQH KRJ ϕ (e) = (v1 , v2 )  pV v1 , v2 ∈Vi DKROL   3iURV JUiIUD SpOGD OHKHW HJ HVWpW YpJLJ WiQFROy IDUVDQJL WiUVDViJ DKRO D FV~FVRN D] HPEHUHN pV NpW FV~FV |VV]H YDQ N|WYH KD D] DGRWW HPEHUHN D] HVWH VRUiQ WiQFROWDN HJPiVVDO 7HJJN IHO KRJ FVDN SiURV WiQFRNDW WiQFROWDN pV EiUPHOLN IpUIL FVDN Q{YHO pV EiUPHOLN Q{ FVDN IpUILYDO WiQFROW $ WiUVDViJ K|OJ WDJMDLW MHO|OYH D FV~FVRN HJLN

V D WiUVDViJ IpUILWDJMDLWMHO|OYHDFV~FVRNPiVLNKDOPD]iQDNQLOYiQSiURV JUiIRWNDSWXQN 7pWHO +D D * SiURV JUiI DNNRU EiUPHO . N|UpQHN D] pOHLQHNDV]iPDSiURV %L]RQ WiV -iUMXN YpJLJ . pOHLW PRQGMXN  YDODPHO 9E{O YDOy9SRQWMiWyONH]GYH$]HpOYSRQWEDYLV]PHO9HOHPH PLYHO 9EpOL SRQW QLQFV |VV]HN|WYH 9EpOL SRQWWDO YE{O 9 EpOL SRQWED YLV] H PLYHO 9EpOL SRQWRNDW QHP N|W |VV]H pO /iWKDWy KRJ D N|U pOHLW HJPiVXWiQ EHMiUYD YiOWDNR]YD PHJQN 9E{O 9EH LOO 9E{O 9EH .|UU{O OpYpQ V]y KD 9E{O UDMWROWXQN DNNRU RGD LV NHOO YLVV]D IXWQXQN V H]pUW D] pOHN V]iPDYDOyEDQSiURV HILQtFLy $ * SiURV JUiI pOHLQHN 0 UpV]KDOPD]iW SiURVtWiVQDNPRQGMXNKD0EiUPHOpOpQHNQLQFVN|]|VYpJSRQWMD 0iV V]yYDO 0 HOHPHL SiURVtWMiN  HJPiVKR] UHQGHOLN  D * SiURV JUiI FV~FVSRQWMDLW 0W WHOMHVQHN PRQGMXN KD 0 OHIHGL * FV~FVDLW V PD[LPiOLVQDN KD QHP OpWH]LN 0QpO QDJREE

HOHP V]iP~0 SiURVtWiVD*QHN $ * JUiI pOHLQHN 0 KDOPD]iW IJJHWOHQQHN PRQGMXN KD 0 EiUPHO NpW pOpQHN QLQFV N|]|V YpJSRQWMD $] 0 IJJHWOHQ pO KDOPD]W WHOMHVQHN PRQGMXN KD 0 YpJSRQWMDL N|]|WW * PLQGHQ SRQWMDV]HUHSHO$]0HOHPHLNpWD]RQRVV]iPRVViJ~UpV]KDOPD]UD ERQWMiN*SRQWMDLWH]pUWQLOYiQLJD]DN|YHWNH]{iOOtWiV 7pWHO +D D * JUiIEDQ YDQ IJJHWOHQ WHOMHV 0 pO KDOPD] DNNRU*FV~FVDLQDNV]iPDSiURV $] 0 KDOPD]W PD[LPiOLVQDN PRQGMXN KD * pOHLQHN QLQFV RODQ0 UpV]KDOPD]DPHOIJJHWOHQpVW|EEHOHPHYDQPLQW0 QHN -HOH *pIPD[ $  JUiI FV~FVSRQWMDLQDN YDODPHO 6 UpV]KDOPD]iW OHIRJy OHV]~Uy  SRQWKDOPD]QDN PRQGMXN KD * EiUPHO pOpQHN OHJDOiEE D] HJLN YpJSRQWMD 6EHQ YDQ -HOH *OSPLQ 7pWHO .{QLJ pQHV   %iUPHO SiURV JUiI IJJHWOHQ pOHLQHN PD[LPiOLV V]iPD HJHQO{ D] pOHNHW OHIRJy SRQWRN PLQLPiOLVV]iPiYDO  %L]RQ WiV $] KRJ D OHIRJy SRQWRN PLQLPiOLV V]iPD QDJREE

HJHQO{ *pIPD[≤OSPLQ  PLQW D PD[LPiOLVDQ IJJHWOHQ pOHN V]iPDDGHILQtFLyEyON|]YHWOHQODGyGLN/HJHQD*JUiISiURV D]D]DGRWW*FV~FVDLQDNHJV = V1 U V2 SDUWtFLyMD7HJNIHOKRJ 9 pV 9 SRQWRNDW NpW HJPiVVDO SiUKX]DPRV HJHQHVHQ YHWWN IHO  1HYH]]N 9 SRQWMDLW IHOV{ SRQWRNQDN pV 9 SRQWMDLW DOVy SRQWRNQDN .{QLJ pQHV pV (JHUYiU -HQ{ D] DV pYHNEHQ NLIHMOHV]WHWWHN HJ PyGV]HU D PD[LPiOLV IJJHWOHQ pOHN PHJKDWiUR]iViUD PHOHW UyOXN PDJDUPyGV]HUQHN LV V]RNWDN QHYH]QL(PyGV]HUUHOOHKHWD]HOOHQNH]{LUiQ~HJHQO{WOHQVpJHW *pIPD[≥OSPLQ EL]RQ WDQL 0D[LPiOLV V]iP~ pOW WDUWDOPD]y SiURVtWiV NHUHVpVH PDJDU PyGV]HUUHO7HJNIHOKRJDSiURVJUiIXQNFV~FVDL$LOO%QHP UHV GLV]MXQNW KDOPD]RNQDN D] HOHPHL pV $EyO $ED LOO %E{O %EH QHP IXW pO /HJHQ DGRWW *QHN HJ 0 SiURVtWiVD  0 OHKHW UHV LV  *QHN YDODPHO HHHHHN ~WMiW DOWHUQiOy

~WQDNIRJMXNQHYH]QLKDD]pOHNIHOYiOWYDHOHPHL0QHNLOOHWYH $ $  $ $ % % % %  ( * 0 QHN SpOGiXO H∈0 H∉0H∈0 H∉ 0-HO|OMHPRVWD*SiURVJUiIFV~FVSRQWMDLQDNDKDOPD]iW$ ∪% (POpNH]WHW{O PHJMHJH]]N KRJ $ LOO % QHP UHV pV GLV]MXQNW WRYiEEi EiUPHO pO FVDN $EyO YDOy SRQWRW N|WKHW |VV]H  %EHOL SRQWWDO  YDJ PRQGKDWMXN IRUGtWYD LV KRJ FVDN %EHOL SRQW YDQ |VV]HN|WYH $EpOL SRQWWDO  $ V]|YHJEH KHOH]HWWiEUiQYDVWDJYRQDOODOMHO|OWN0pOHLW$%MHO|OL$ LOO % 0 iOWDO OH QHP IHGHWW SRQWMDLW +D WDOiOXQN RODQ DOWHUQiOy HHHHHN XWDW PHO %E{O LQGXO pV $EHQ YpJ]{GLN DNNRU D] HHHHHN út M-ben lévô páros indexû éleit cseréljük ki a nem M-ben lévô páratlan indexûekre. Az így QHUW ~M 0  SiURVtWiVD *QHN pV 0 QHN HJJHO W|EE HOHPH YDQ PLQW0QHN$N|YHWNH]{OpSpVEHQPHJKDWiUR]]XND]0 K|]WDUWR]y $ %  KDOPD]RNDW pV NHUHVVQN

RODQ DOWHUQiOy XWDW PHO %  E{O LQGXO pV $-ben végzôdik. Az alternáló út páros indexû éleit M-bôl törölve, s M-höz csatolva az út páratlan indexû pOHLW D *QHN HJ 0  SiURVtWiViW NDSMXN PHOQHN HJJHO W|EE HOHPH YDQ PLQW 0 QHN $] DOJRULWPXVW QLOYiQ DGGLJ OHKHW IROWDWQLDPtJWDOiOXQNDIHQWHPOtWHWWWtSXV~DOWHUQiOyXWDNDW 0HJOHKHW PXWDWQL KRJ PLNRU PiU QHP OHOQN DONDOPDV DOWHUQiOy  XWDW D] XWROVy OpSpVEHQ NDSRWW 0 SiURVtWiV Q  SiURVtWiV PD[LPiOLV HILQtFLy: Ha a G egyszerû gráf bármely csúcsának a foka k, DNNRU*WNUHJXOiULVQDNPRQGMXN $ .HGYHV 2OYDVy KD NLFVL N pUWpNHNUH OHUDM]ROMD D N V]|JSRQW~ WHOMHV JUiIRW pV]UH IRJMD YHQQL KRJ D]RN N regulárisak. S valószínûleg azt is belátja, hogy ha valamely IiQDN NHWW{QpO W|EE FV~FVD YDQ DNNRU D] QHP OHKHW UHJXOiULV VHPPLOHQNUDVHP HILQtFLy$*JUiIRWNV]RURVDQ|VV]HIJJ{QHNPRQGMXNKD EiUPHO NpW NO|QE|]{ YY  FV~FVD

N GDUDE RODQ ~WWDO N|WKHW{ |VV]HPHOHNQHNDYY NtYOPiVN|]|VFV~FVSRQWMXNQLQFVHQ 1HP QHKp] pV]UHYHQQL KRJ D N V]|JSRQW~ WHOMHV JUiI (k − 1) V]HUHVHQ |VV]HIJJ{ V D]W VHP KRJ KD YDODPHO * JUiI QHP WDUWDOPD]KLGDWDNNRUD]OHJDOiEENpWV]HUHVHQ|VV]HIJJ{ 6]iOOtWiVL SUREOpPiN HOHNWURPRV KiOy]DWRN HOHP]pVpQpO általában gyakran szükségesek a következõ fogalmak illetve WpWHOHN HILQtFLy $ * JUiI XY QHP V]RPV]pGRV FV~FVDLW OHIRJy SRQWKDOPD]*FV~FVDLQDNRODQUpV]KDOPD]DDPHOEiUPHOXWpV v-t összekötõ l útnak tartalmazza legalább egy belsõ u-tól v-tõl különbözõ pontját. Jele: uv-LP 1LOYiQD]RNDOHIRJySRQWKDOPD]RND]pUGHNHVHNPHOHNQHN a lehetõ legkevesebb elemük van. HILQtFLy $ * JUiI SRQWIJJHWOHQ XY~WMDLQDN D KDOPD]iQ olyan u kezdõpontú ill. v végpontú utak halmazát értjük, DPHOHNQHN H NpW FV~FV SRQWRQ NtYO PiV N|]|V SRQWMXN QLQFVHQ -HOHXY3)8

$SRQWIJJHWOHQXWDNQDNDPD[LPiOLVV]iPDD]DPLiOWDOiEDQ pUGHNHV 7pWHO+DD*JUiIEDQXpVYQHPV]RPV]pGRVFV~FVRNDNNRU D SRQWIJJHWOHQ XWDN PD[LPiOLV V]iPD NLVHEE YDJ OHJIHOMHEE egyenlõ az u,v csúcsokat legkevesebb ponttal lefogó ponthalmaz HOHPHLQHNDV]iPD)RUPXOiYDOtUYD PD[ XY − 3)8 ≤ PLQ XY − / 3  $ WpWHO pV D IRJDOPDN MREE PHJpUWpVH YpJHWW DMiQOMXN D Kedves Olvasó figyelmébe a következõ példát. A kékek 2 csapata XEDQ  LOO YEHQ IRJODO KHOHW $ SLURVRN IHODGDWD KRJ PHJDNDGiOR]]iN D NpNHN pULQWNH]pVpW 1LOYiQ PLQGHQ ÄIJJHWOHQ ~WUD NL NHOO NOGHQLN HJHJ HJVpJHW DPHOHN OHIRJMiN D] összes szóba jöhetõ útat.  7pWHO+DD*JUiIEDQXLOOYQHPV]RPV]pGRVDNNRUD]XW v-vel összekötõ pontfüggetlen utak maximális száma megegyezik az XYW OHJNHYHVHEE SRQWWDO OHIRJy SRQWKDOPD] HOHPHLQHN D V]iPiYDO-HOEHQ PD[ XY − 3)8 ≡ PLQ XY − / 3 

(]WDWpWHOWV]RNiVRVSRQW0HQJHUWpWHOQHNPRQGDQLPLYHOD tételt elõször K. Menger publikálta 1927-ben HILQtFLy$]XYXWDNDWOHIRJypOKDOPD]RQD*JUiIpOHLQHN RODQ(¶UpV]KDOPD]iWpUWMNDPHOWDUWDOPD]]DEiUPHOXY~WQDN OHJDOiEEHJpOpW-HOHXY/e HILQtFLy eOIJJHWOHQ XY XWDN KDOPD]iQ D * JUiI RODQ útjait értjük, amelyek közül bármely kettõnek nincs közös éle (közös csúcsuk azonban lehet olyan is, mely az u-tól ill. v-tõl is különbözõ). Jele: uv-ÉFU 7pWHOBármely G gráfban az u-t v-vel összekötõ élfüggetlen utak maximális száma kisebb vagy egyenlõ, mint az uv utakat OHIRJy EiUPHO pOKDOPD] HOHPHLQHN D V]iPD .LFVLW U|YLGHEEHQ MHO|OYH PD[ XY − ()8 ≤ PLQ XY − / (  7pWHO pO0HQJHUWpWHO Bármely G gráfban az uv-t összekötõ élfüggetlen utak maximális száma egyenlõ az uv utakat lefogó PLQLPiOLVDQ OHIRJy pOHNQHN D V]iPiYDO  .pSOHWWHO tUYD PD[ XY − ()8 ≡ PLQ XY − / (  )HODGDWRN  %L]RQ WVD

EH KRJ EiUPHO YW{O ZLJ KDODGy pO VRUR]DW WDUWDOPD]YW{OZLJKDODGyXWDW  %L]RQ WVDEHKRJKDXpVY |VV]HN|WKHW{N YRQDOODO YDODPLQW Y pVZLVDNNRUXpVZLV|VV]HN|WKHW{HJYRQDOODO  %L]RQ WVD EH KRJ PLQGHQ XW pV YW |VV]HN|W{ YRQDO PHO QHP ~W IHOERQWKDWy HJ XW YYHO |VV]HN|W{ ~WUD pV HJ YDJ W|EE N|UUH ,O PyGRQ FVXSiQ D] XWDN PLQLPiOLVDN DEEDQ D] pUWHOHPEHQ KRJ pOHLNQHN HJHWOHQYDOyGLUpV]KDOPD]DVHPN|WL|VV]HYpJSRQWMDLNDW  %L]RQ WVDEHKRJHJ]iUWLUiQ WRWWYRQDO PHO QHP N|U NpW YDJW|EELUiQ WRWWN|UUHERQWKDWy  0XWDVVDPHJKRJXEyOYEHYLY{LUiQ WRWW YRQDO PHO QHP ~W IHOERQWKDWy XEyO YEH YLY{ LUiQ WRWW ~WUD pV HJ YDJ W|EE LUiQ WRWW N|UUH  ,JD]ROMD KRJ KD  WDUWDOPD] YE{O ZEH LOO ZE{O YEH YH]HW{ LUiQ WRWWYRQDODWDNNRUWDUWDOPD]]iUWLUiQ WRWWYRQDODW LUiQ WRWW vonalban az élek nem ismétlõdhetnek). Adjon olyan példát a fenti IHOWpWHOHN PHOOHW PLNRU

LV QHP OpWH]LN RODQ ]iUW LUiQ WRWW YRQDO PHO YUHpVZUHLVLOOHV]NHGLN   ,JD]ROMD KRJ KD D  LUiQ WRWW JUiI PLQGHQ SRQWMiQDN EHIRND SR]LWtY DNNRU  V]NVpJNpSSHQ FLNOLNXV JUiI  $ * JUiI FLNOLNXV KD WDUWDOPD]N|UW  0XWDVVD PHJ KRJ HJ YpJHV LUiQ WRWW  JUiI DNNRU pV FVDN DNNRUHU{VHQ|VV]HIJJ{KDOpWH]LNRODQ]iUWLUiQ WRWWpOVRUR]DWDPHO PLQGHQ pOpW OHJDOiEE HJV]HU WDUWDOPD]]D   HU{VHQ |VV]HIJJ{ KD EiUPHOYFV~FViEyOYH]HWLUiQ WRWW~WEiUPHOPiVLNZFV~FViED  %L]RQ WVD EH KRJ D (ϕ9  LUiQ WRWW JUiI DNNRU pV FVDN DNNRU HU{VHQ |VV]HIJJ{ KD D FV~FVRN KDOPD]iQDN EiUPHO :9: SDUWtFLyMiUD D KH] WDUWR]y LUiQ WiV QpONOL JUiI PHJIHOHO{ V]pWYiJy KDOPD]D WDUWDOPD] OHJDOiEE HJ RODQ pOW PHO :E{O 9EH pV HJ RODW PHO9E{O:EHPHJ %L]RQ WVD EH KRJ KD D  LUiQ WRWW JUiIEDQ D K1 , K2 ,., Kn LUiQ WRWW N|U|N RODQ VRUR]DWD PHOHN N|]O EiUPHO NpW

HJPiVXWiQ N|YHWNH]{QHN YDQ OHJDOiEE HJ N|]|V FV~FVD DNNRU H N|U|N iOWDO PHJKDWiUR]RWWUpV]JUiIMDQHNHU{VHQ|VV]HIJJ{ 11; Bizonyítsa be, hogy ha valamely egyszerû gráf nem teljes, akkor OHJDOiEE HJIpOH PyGRQ OHKHW  ~J LUiQ WDQL KRJ D] HUHGPpQO NDSRWW LUiQ WRWWJUiIQHWDUWDOPD]]RQIHV]tW{IiW  (J JUiI OHKHW V]LPPHWULNXV pV WUDQ]LWtY LV XJDQDNNRU QHP UHIOH[tY$GMRQHUUHSpOGiW0LMHOOHP]LD]HO{EELWtSXV~JUiIRNDW"  .RQVWUXiOMD PHJ D]RNDW D * JUiIRNDW PHOHN FV~FVDL D  HJpV] V]iPRN pV X pV Y pOOHO YDQ |VV]H N|WYH KD XY pVX≡YPRG   14; Ha egy összefüggô G gráf nem egyrétûen bejárható ( tehát WDUWDOPD] OHJDOiEE QpJ SiUDWODQ IRN~ FV~FVRW  DNNRU EL]RQ WVD EH KRJ OHJDOiEENpWNO|QE|]{PLQLPiOLVOHIHGpVHYDQ  +D D * |VV]HIJJ{ JUiI PLQLPiOLV OHIHGpVH N GDUDE YRQDODW WDUWDOPD] DKRO N! DNNRU * HJHWOHQ pOpQHN HOKDJiViYDO RODQ  JUiIRW

NDSXQNPHOQHNPLQLPiOLVOHIHGpVHLNNYDJNYRQDODWWDUWDOPD]QDN  %L]RQ WVD EH KRJ HJ |VV]HIJJ{ (XOHUJUiI PLQGHQ HJHV V]pWYiJy KDOPD]D OHJDOiEE NpW pOW WDUWDOPD] WRYiEEi KRJ PLQGLJ SiURV V]iP~pOE{OiOO  (XOHUIRUPXODVtNEHOLJUiIRNV]DEiORVWHVWHN )HOWpWHOH]]N KRJ D .HGYHV 2OYDVyQDN LQWLXWtYH HOpJ SRQWRV pV NRUUHNW IRJDOPD YDQ D VtN J|UEpNU{O EiU NRUUHNW pV NHOO{HQ iOWDOiQRV J|UEH IRJDORPPDO NpV{EE GLIIHUHQFLiOJHRPHWULDL WDQXOPiQDLNEDQ találkozni fognak. Megemlítjük például, hogy egy egyszerû zárt JordanJ|UEH NpW GLV]MXQNW WDUWRPiQUD ERQWMD D VtNRW 3pOGiXO HJ RULJy N|]pSSRQW~ U VXJDU~ . N|U 3 U VLQ W U FRV W  HJ D] RULJyW WDUWDOPD]y N|UODSUD pV D] D]W N|UO|OHO{ YpJWHOHQ WDUWRPiQUD ERQWMD D VtNRW (J * JUiIRW VtNED UDM]ROKDWyQDN PRQGXQN KD D JUiI pOHLW OHKHW UHDOL]iOQL D VtNEDQ RODQ YRQDODNNDO KRJ EiUPHO NpW pOQHN FVDN D * JUiI

FV~FVSRQWMDLEDQOpY{YpJSRQWMDLOHKHWQHNN|]|VHN 7pWHO %iUPHO * YpJHV JUiI UHDOL]iOKDWy D KiURP GLPHQ]LyV HXNOLGHV]LWpUEHQ %L]RQ WiV/HJHQDGRWWD G ( E , ϕ ,V ) JUiI9HJQNIHODWpUEHQHJH HJHQHVWD]HJHQHVHQ n = V SiURQNpQWNO|QE|]{ Vi (i = 1,2,., n) SRQWRWpVD] H HJHQHVUH LOOHV]NHG{ q = E  SiURQNpQW NO|QE|]{ Si (i = 1,2,., q )  VtNRW pV PLQGHJLN VtNEDQ Pi (i = 1,2,., q )  SRQWRW RODW PHO QHP LOOHV]NHGLN HUH +D ( ) D]HWpODYLpVDYMSRQWRNDWN|W|WWH|VV]HD]D] ϕ (et ) = vi , v j DNNRUN|VVN |VV]H D 9L SRQWRW 3WYHO HJ X HJHQHV V]DNDVV]DO V 3WW LV 9MYHO N|VVH |VV]H HJ Z V]DNDV] $] H pOW D] HO{EE PHJNRQVWUXiOW 9LE{O 9MEH PHQ{ W|U|WW YRQDO IRJMD UHSUH]HQWiOQL $ NRQVWUXNFLy DODSMiQ QLOYiQYDOy KRJ D] pOHNQHN PHJIHOHO{ W|U|WWYRQDODN FVDN D JUiI FV~FVDLQDN NLMHO|OW 9L SRQWRNEDQWDOiONR]KDWQDN A következôkben olyan egyszerû összefüggô síkbeli gráfokkal IRJODONR]XQN

PHOHN ~Q VRNV]|JKiOyW DONRWQDN 6RNV]|JKiOyW DONRWQDN DEEDQ D] pUWHOHPEHQ KRJ IHOERQWKDWyN RODQ PLQLPiOLV N|U|NUH PHOHN D EHOVHMNEHQ PiU QHP WDUWDOPD]QDN D JUiIQDN VHPPLOHQ SRQWMiW H N|U|NHW IRJMXN WDUWRPiQRNQDN QHYH]QL YDJ RUV]iJRNQDN  $ JUiI PLQGHQ FV~FViQDN IRND QDJREE PLQW NHWW{ EiUPHO pO SRQWRVDQ NpW WDUWRPiQW KDWiURO  +D $IULND WpUNpSpW YHVV]N V]HPJUH V QHP iEUi]ROQiQN 0DGDJDV]NiUW pV /HVRWKRW  D pODIULNDL .|]WiUVDViJ EHOVHMpEHQ  WRYiEEi D] RUV]iJKDWiURNDW pV D WHQJHUSDUWRNDW GHILQLiOMXN pOHNQHN $ JUiI FV~FVSRQWMDLQDN WHNLQWMN D]RQ SRQWRNDW DKRO OHJDOiEE KiURP pO WDOiONR]LN DNNRU HJ VRNV]|JKiOyW NDSXQN (JHJ RUV]iJQDN PHJIHOHO{ PLQLPiOLV DEEDQ PLQLPiOLV N|UW D] pUWHOHPEHQ KRJ EHOVHMH QHP WDUWDOPD]]D D JUiI VHPHOLN FV~FVSRQWMiW WDUWRPiQQDN YDJ QHYH]]QN $] RUV]iJQDN $IULNiW N|UOYHY{ WDUWRPiQW YpJWHOHQ WDUWRPiQQDN QHYH]]N 

7pUNpSpV]HWEHQJDNUDQKDV]QiOWHOMiUiVDV]WHUHRJUDILNXVSURMHNFLy PLNRULVHJGJ|PEpVHJSVtNSRQWMDL N|]|WWOpWHVtWQNHJPHJIHOHOWHWpVW ( 7pWHOH]]N IHO KRJ D G J|PEQN HJ  SRQWEDQ pULQWL D VtNRW $  SRQW iWHOOHQHV SRQWMD OHJHQ (  JRQGROMRQ D GpOL LOO D] pV]DNL VDUNUD  $ VtN YDODPHO 3 SRQWMiQDN J|PEL PHJIHOHO{MpW 3 W PHJNDSMXN KD D 3W (YHO |VV]HN|W{ HJHQHVQHN YHVV]N D * J|PEEHO D PHWV]pVSRQWMiW $ V]WHUHRJUDILNXV SURMHNFLyYDO D VtNRQ iEUi]ROKDWXQN HJ J|PEUH UDM]ROW JUiIRW pV IRUGtWYD HJVtNEDUDM]ROWJUiIRWL]RPRUIPyGRQiEUi]ROKDWXQNDJ|PE|Q 3 2 3 6 /HJHQ D G ( E , ϕ ,V )  JUiI HJ VRNV]|JJUiI pOHLQHN D V]iPiW T FV~FVDLQDNV]iPiWQpVWDUWRPiQDLQDNV]iPiWMHO|OMHW 7pWHO (XOHUIRUPXOD +D*VRNV]|JJUiIDNNRU () QTW  $IHQWLWpWHOWV]RNiV(XOHUIpOHSROLpGHUWpWHOQHNLVQHYH]QLPLYHO D KiURPGLPHQ]LyV WpU SROLpGHUHLQHN FV~FVSRQWMDLQDN pOHLQHN pV

KDWiUROy ROGDO ODSMDLQDN D V]iPD N|]|WW iOODStW PHJ |VV]HIJJpVW $ SROLpGHU IRJDOPiQDNW|EEGLPHQ]LyViOWDOiQRVtWiViYDOpVDSROLpGHUHNLQYDULiQVDLQDN DPHJKDWiUR]iViYDOIRJODONR]LNW|EEHNN|]|WWDNRPELQDWRULNXVWRSROyJLD %L]RQ WiV $ * JUiI WDUWRPiQDLQDN V]iPD V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN +D D * HJHWOHQ HJ N|UE{O iOO DNNRU D WDUWRPiQRN V]iPD  $] pOHN pV FV~FVRN V]iPD PHJHJH]LN H]pUW D W  HVHWpQD]iOOtWiVLJD]/HJHQD]iOOtWiVLJD]W NUDLJD]VEL]RQ WVXN KRJ LJD] W NUH LV +D DGRWW D * JUiI W WDUWRPiQQDO DNNRU W WDUWRPiQQDO UHQGHONH]{ *  JUiIRW RO PyGRQ NDSXQN KRJ YDODPHO WDUWRPiQWHJYYRQDOODONpWWDUWRPiQUDERQWXQN $ YRQDOYNH]G{pVYVYpJSRQWMDD*QHNLVSRQWMDYROW H]IHOWHKHW{ Y WyOYVLJV~MFV~FVSRQWpVV GDUDE ~M pO YDQ * UH YRQDWNR]yODJ HNNRU Q QVW WT TV pV D] LQGXNFLyV IHOWHYpV PLDWW HNNRU n − q + t = 2 $] iEUiQV]DJDWRWW YRQDOODO D]

~M pOHNHW pV UHV N|U|NNHO MHO|OWN D] ~M SRQWRNDW /HJHQDGRWWDVtNRQNpWSiUKX]DPRVHJHQHVHpVI/HJHQYYYH HJPiVXWiQN|YHWNH]{SRQWMDpVIQHNKiURPSRQWMDXXX$YYY SRQWRNDW Ki]DNQDN V D] XXX SRQWRNDW NXWDNQDN QHYH]]N $]W D * JUiIRW PHOQHN D FV~FVDL D] HO{EEL NXWDN LOO Ki]DN pV EiUPHO NXWDW  EiUPHO Ki]]DO pO N|W |VV]H D KiURPKi]KiURPN~W JUiIQDN PRQGXQN*UiIRNVtNEDUDM]ROKDWyViJiWQHPEHIROiVROMDKDYDODPHOpON|Q HJ ~M PiVRGIRN~ FV~FVSRQWRW YHVV]QN IHO YDJ KD YDODPHO NpW pOpW D JUiIQDN DPHOHN XJDQ DUUD D Y PiVRGIRN~ FV~FVUD LOOHV]NHGWHN HJEHROYDVV]XN V YW W|U|OMN $] HO{EEL NpW WUDQV]IRUPiFLyW Ki]L használatra, nevezzük topológikus bôvítésnek illetve szûkítésnek. HILQtFLy$*JUiIRWD JUiIIDOWRSROyJLNXVDQL]RPRUIQDNPRQGMXN ha G-bôl véges sok topológikus szûkítéssel ill. bôvítéssel G-el izomorf JUiIiOOtWKDWyHO{ 7pWHO  *

.XUDWRZVNL   $ * JUiI DNNRU pV FVDN DNNRU VtNED UDM]ROKDWy KD QLQFV RODQ UpV]JUiIMD DPHO WRSROyJLNXVDQ L]RPRUI D] |WV]|JSRQW~.WHOMHVJUiIIDOYDJDKiURPKi]KiURPN~WJUiIIDO $ . V D  JUiIRNDW D IHQWL WpWHO NDSFViQ XUDWRZVNLIpOH JUiIRNQDN LV V]RNWiN QHYH]QL $ WpWHOW QHP EL]RQ WMXN $] (XOHU IRUPXOiEyO VHJtWVpJpYHO D]RQEDQ N|QQHQ EL]RQ WKDWy KRJ D .XUDWRZVNL IpOHJUiIRNQHPVtNEDUDM]ROKDWyN 7pWHO$.XUDWRZVNLIpOHJUiIRNQHPUDM]ROKDWyNVtNED DNNRU %L]RQ WiV $] (XOHUIRUPXOD V]HULQW KD . VtNED UDM]ROKDWy W TQ  W TQ   )LJHOHPEHYpYHKRJ.HJHJWDUWRPiQiWOHJDOiEEpOKDWiUROMD pV PLQGHQ pO SRQWRVDQ NpW WDUWRPiQQDN D KDWiUD HNNRU W≤T HJHQO{WOHQVpJQHNNHOOHQHWHOMHVHGQLDPLLWW ! PLDWWQHPLJD]. UyOWXGMXNKRJSiURVJUiIVH]pUWQLQFVRODQN|UHPHOSiUDWODQ VRN pOW WDUWDOPD]QD H]pUW . WDUWRPiQDLW  D WDUWRPiQRN KDWiUDL N|UW

DONRWQDN OHJDOiEEpOKDWiUROMD$]HO{EELHNDODSMiQ.pOHLQHNDV]iPD DOXOUyOEHFVOKHW{  W  HO V H] HOOHQWPRQG DQQDN KRJ .QDN FVDNpOHYDQ 6tNED UDM]ROKDWy * JUiIRNKR] VRN HVHWEHQ KDV]QRV KR]]iUHQGHOQL HJ *  GXiOLV JUiIRW D N|YHWNH]{ PyGRQ  PLQGHQ 7L WDUWRPiQiEDQ IHOYHV]QN HJXLSRQWRW/HJHQHVRODQpOH*QHNPHOD7L7MWDUWRPiQRN KDWiUiQ IHNV]LNHNNRUYH]HVVHQHV pOXLEyOXMEH*DNRUOiVFpOMiEyODMiQOMXND .HGYHV 2OYDVyQDN UDM]ROMD OH D V]DEiORV KDWV]|J JUiIMiQDN GXiOLViW 0HJHPOtWMN LWW PpJ KRJ KD D N pO iOWDO KDWiUROW WDUWRPiQRN V]iPiW ϕN YDO MHO|OMN DNNRU HJUpV]W ϕ   PLYHO VRNV]|J JUiIRNQiO NL]iUWXN D KXURNpOHNHW PiVUpV]W   2T = 2 ⋅ ϕ 2 + 3 ⋅ ϕ 3 + 4 ⋅ ϕ 4 + . + N ⋅ ϕ N 2 +   6]DEiORVSROLpGHUHN $ KiURPGLPHQ]LyV HXNOLGHV]L WpUEHQ D]RNDW D NRQYH[ SROLpGHUHNHW V]RNWiN V]DEiORVQDN QHYH]QL PHOHNQHN D] pOHL pOV]|JHL pV ODSV]|JHL

HJHQO{HN$SROLpGHUpOHLpVFV~FVDLRODQ*V]DEiORVVtNJUiIRWDONRWQDN  D] KRJ VtNED UDM]ROKDWyDN D V]WHUHRJUDILNXV SURMHNFLyYDO OiWKDWy EH  PHO JUiIQDN PLQGHQ FV~FVSRQWMiQDN D IRND HJHQO{  HJHQO{ SpOGiXO U UHO pV PLQGHQ WDUWRPiQW XJDQDQQL PRQGMXN K pO KDWiURO 7RYiEEi * GXiOLVD *  LV V]DEiORV -HO|OMH D  V]DEiORV SROLpGHU FV~FVDLQDN pOHLQHNWDUWRPiQDLQDNDFV~FVRNIRNV]iPiWpVDWDUWRPiQRNDWKDWiUROy pOHN V]iPiW UHQGUH QTW UK KDVRQOyDQ  *  PHJIHOHO{ DGDWDL OHJHQHN UHQGUH Q T W U K  $ * JUiI pOHL pV D FV~FVSRQWRN IRNV]iPDL N|]|WW WHOMHVOD L T UQWRYiEEiUQ KW TW pV WW NLIHMH]YH L E{O DGyGLN T  UQ pV W UK Q +HOHWWHVtWVNTWLOOHWYHWWD] () (XOHUIRUPXOiED$]WNDSMXNKRJ LL Q>  UK   U@  YDJKYDOYpJLJV]RUR]YD LLL Q>KUUK@ K PLYHOQpVKSR]LWtYHJpV]HNH]pUWtUKDWy LY KUKU!LOO Y KUKU Y WV]RU]DWWiDODNtWYDpVUHQGH]YHQHUMN YL  K U

 $ YL  HJHQO{WOHQVpJQHN K pV U SR]LWtY HJpV] YROWD PLDWW FVDN YpJHV VRN PHJROGiVDYDQ9DQQDNRODQPHJROGiVRNPHOHNKH]WDUWR]yJUiIRNV]iPXQNUD JHRPHWULDL RNRN PLDWW pUGHNWHOHQHN 3pOGiXO KD U  DNNRU D JUiI PLQGHQ V]|JSRQWMiEDQNpWpOWDOiONR]LND]D]D*JUiIN|UKDK DNNRU FV~FVRN V]iPD  pV D * HNNRU D NpW V]|JSRQWEyO V D] D]RNDW |VV]HN|W{ WHWV]{OHJHV V]iP~ pOE{O iOO $] pUGHNHV HVHWHNHW D N|YHWNH]{ WiEOi]DWED IRJODOWXN |VV]H  5      K      Q      T      7      WtSXV WHWUDpGHU NRFND GRGHNDpGHU RNWDpGHU LNR]DpGHU A szabályos testek elég régóta ismertek. Platón Timaeus c mûvében IHOVRUROMD D] |VV]HV V]DEiORV SROLpGHUW $ N|YHWNH]{ iEUiN D V]DEiORV WHVWHNHWpVVtNEDUDM]ROWJUiIMDLNDWPXWDWMiN NRFND WHWUDpGHU GRGHNDpGHU RNWDpGHU LNR]DpGHU   Mátrix reprezentációk Az illeszkedési mátrix HILQtFLy$ G ( E , ϕ ,V )

LUiQ WiVQpONOLJUiILOOHV]NHGpVL LOO LQFLGHQFLD PiWUL[D An ,m ai , j  DKRO DLM  KD D YL FV~FV LOOHV]NHGLND]HMpOUHpVHJpENpQWKDD]HMpOKXURNpOD MRV]ORSPLQGHQHOHPH di  e1 e2  v1  0 1 v2  0 1  v3  0 0 A = v4  0 0  v5  0 0 v6  0 0  v7  0 0  v8  0 0 e3 e4 e5 e6 e7 e8 e9 e10 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 e11   0 0  0 0  0 1  0  1 $IHQWLGHILQtFLyEDQDFV~FVRNV]iPiWQD]pOHNV]iPiWP MHO|OWH D]D] 9 Q pV ( P +XURNpOHNU{O QHP DG KDV]QiOKDWy LQIRUPiFLyW D JUiI LOOHV]NHGpVL e1 e9 PiWUL[D ,UiQ WDWODQ v3 JUiIRN LOOHV]NHGpVL v1 PiWUL[DLQDN D VRUDL LOO D] e3 e10 RV]ORSDLQDN D v8 e4 SHUPXWiOiViYDO e2 e11 HJPiVED iWYLKHW{N +D D e6 e8 JUiIRN * pV D  v7 v6 L]RPRUIDN DNNRU D] e7 v2 v5 v4 e5 LOOHV]NHGpVL PiWUL[DLN $ LOO $ D VRUDLN

LOO RV]ORSDLN DONDOPDV SHUPXWiOiViYDO HJPiVED iWYLKHW{N +D D PiWUL[RN HJIRUPiN DNNRU QHP WXGMXN KRJ D PHJIHOHO{JUiIRNL]RPRUIDNHPLYHOD]LOOHV]NHGpVLPiWUL[QHP DG IHOYLOiJRVtWiVW DUUyO KRJ HJ KXURNpO PHOLN FV~FVSRQWUD LOOHV]NHGLN pV PHOLNUH QHP $ WRYiEELDNEDQ FVDN RODQ LUiQ WDWODQ JUiIRN LOOHV]NHGpVL PiWUL[DLUyO EHV]pOQN PHOHNQHN QLQFV KXURNpON $ GHILQtFLy DODWWL PiWUL[ D V]|YHJEH UDM]ROW JUiI LOOHV]NHGpVL PiWUL[D $ PiWUL[  EORNNEyO iOO PLYHO D JUiIXQN NpW NRPSRQHQVH YDQ pV HO{V]|U D] HOV{ NRPSRQHQVEH WDUWR]y FV~FVRNDW LOO pOHNHW DGWXN PHJ ÈOWDOiEDQ LV LJD] KD YDODPHO * JUiI N NRPSRQHQVE{O iOO DONDOPDV PyGRQ LQGH[HOYH D * FV~FVDLW pV RV]ORSDLW D]  LOOHV]NHGpVL PiWUL[D N EORNNEyO IRJ iOOQL D]D] D PiWUL[D D]  A1 0 . 0    0 A2 . 0   DOiEEL DODN~ OHV] A =  DKRO D] $L D * PiWUL[ L  . .    0 . An   0

NRPSRQHQVpQHND]LOOHV]NHGpVLPiWUL[D 7pWHO +D D * JUiI UHQGMH Q pV N NRPSRQHQVE{O iOO pV LOOHV]NHGpVLPiWUL[D$DNNRUUJ $ QN DPiWUL[RWD=WHVW I|O|WWLQHNWHNLQWMN D]D]PRG  V]iPROXQN  %L]RQ WiV $ EL]RQ WiVW D NRPSRQHQVHN V]iPD V]HULQWL WHOMHVLQGXNFLyYDOYpJH]]N/pQHJpEHQDWpWHOHO{WWHPOtWHWW EORNNIHOERQWiVPLDWWHOHJHQG{D]iOOtWiVWN HVHWpQEHOiWQL PLYHODI{iWOyQNtYOPLQGHQWWiOOpVHPLDWWDEORNNRNEyO iOOy KLSHUPiWUL[ UDQJMD PHJHJH]LN D I{iWOyEDQ iOOy EORNN UDQJMDLQDN |VV]HJpYHO /HJHQ * HOV{ NRPSRQHQVH QHN pV OHJHQ FV~FVDLQDN V]iPD Q V LOOHV]NHGpVL PiWUL[D $ $] $ PiWUL[UDQJMDOHJIHOMHEEQOHKHW9DOyEDQDGMXND]$PiWUL[ PLQGHQ VRUiW D] $ PiWUL[ XWROVy VRUiKR] (NNRU D] XWROVy VRU PLQGHQ HOHPH  OHV] PLYHO PLQGHQ RV]ORSEDQ  GDUDE HJHV YDQ  HJ pO SRQWRVDQ NpW FV~FVUD LOOHV]NHGLN +D QQpO NHYHVHEE V VRU |VV]HJH LV W DGQD SpOGiXO D] LLLV 

DNNRU YYYVFV~FVRNHJLNpE{OVHPYH]HWQHpOYDODPHOPiVLND YYYV SRQWRNWyO NO|QE|]{ FV~FVSRQWED HOOHQWPRQGYD DQQDN KRJ * |VV]HIJJ{ YROW $] HO{EE PRQGRWWDN PHJLVPpWHOKHW{N * EiUPHO NRPSRQHQVpUH YRQDWNR]yODJ V ILJHOHPEH YpYH KRJ D VSHFLiOLV DODN~ $ KLSHUPiWUL[XQN $L EORNNMDLQDN UDQJMDLQDN D] |VV]HJH PDJiQDN D KLSHUPiWUL[QDN D UDQJMiYDOHJH]LNPHJD]iOOtWiVWEHEL]RQ WRWWXN +D D * JUiI $ LOOHV]NHGpVL  PiWUL[iEyO NRPSRQHQVHQNpQW HJHJ VRUW HOKDJXQN DNNRU * ~Q UHGXNiOW LQFLGHQFLD PiWUL[iW NDSMXN 1HP QHKp] EHOiWQL KRJ KD YDODPHO NYDGUDWLNXV QN ⋅ QN DVUpV]PiWUL[GHWHUPLQiQVDQHPDNNRU D UpV]PiWUL[ RV]ORSDLKR] WDUWR]y pOHN * PLQGHQ NRPSRQHQVpQHN NLMHO|OLNHJHJIHV]tW{IiMiW 7pWHO+DD*JUiIHHHNpOHLN|UWDONRWQDNDNNRU D] LQFLGHQFLD PiWUL[ D UHGXNiOW LQFLGHQFLD PiWUL[ HHHNiOWDONLMHO|OWRV]ORSDLOLQHiULVDQIJJ{N %L]RQ WiV $ NLMHO|OW RV]ORSRNQDN

PHJIHOHO{ pOHN N|]O NHWW{YDJLOOHV]NHGLNEiUPHOFV~FVSRQWUDH]pUWDNLMHO|OW RV]ORSRN EiUPHO VRUiEDQ  YDJ  GDUDE HV iOO  V H]HN |VV]HJHPRG  YDOyEDQ$]D]DV]yEDQIRUJyYHNWRURN|VV]HJH VH]SRQWRVDQD]WMHOHQWLKRJOLQHiULVDQIJJ{N HILQLFLy $ G ( E , ϕ ,V )  LUiQ WRWW JUiI LOOHV]NHGpVL PiWUL[iQDNQHYH]HPD] An , m ai , j DKRODLM KDDYLFV~FVEDIXW ( )  EH D] HM pO DLM  KD YL FV~FVEyO IXW NL D] HM pO pV  HJpENpQWKDD]HMpOKXURNpODMRV]ORSPLQGHQHOHPH ËUiQ WRWWJUiILQFLGHQFLDPiWUL[iUDLVKDVRQOyiOOtWiVRN LJD]ROKDWyN PLQW DPLOHQHNHW D] tUiQ WiV QpONOL JUiIRNUD LJD]ROWXQN GH +3RLQFDUH DOiEEL WpWHOH UiYtOiJtW EL]RQRV HOWpUpVHNUH 7pWHO +D D] $ NYDGUDWLNXV PiWUL[ YDODPHO * JUiI LQFLGHQFLD PiWUL[iQDN QHP QXOOD GHWHUPLQiQV~ UpV]PiWUL[D DNNRU GHW $  %L]RQ WiV 7HUPpV]HWHVHQ LWW D YDOyV WHVW I|O|WW V]iPROWXN D GHWHUPLQiQVW /HJDOiEE HJ RV]ORS YDQ D

V]yEDQ IRUJyGHWHUPLQiQVEDQDPHOEHQFVDNHJHOHPNO|QE|]LNWyO fejtsük ki e sor szerint, és az eggyel alacsonyabb rendû DOGHWHUPLQiQVUD LVPpWHOMN PHJ D] HO{EEL RNRVNRGiVW (]W D] HOMiUiVW PHJLVPpWHOYH DQQLV]RU PLQW DPHQQL D GHWHUPLQiQV UHQGMHYpJH]HWODEL]RQ WDQGyiOOtWiVDGyGLN A körmátrix $ . (NL,M )  N|UPiWUL[ D]W PXWDWMD KRJ D G ( E , ϕ ,V )  JUiI pOHL PHO N|U|NEHQ V]HUHSHOQHN HILQLFLy V]HULQW 1, ha e j é le a ki körnek ki , j =  ki körnek . 0, ha ej nem é le a ,UiQ WRWW * JUiIKR] KD PLQGHQ N|UK|] PiU NLMHO|OWQN HJHJEHMiUiVLLUiQWDNNRUD]DOiEELXWDVtWiVVDOUHQGHOQN N|UPiWUL[RW  1, ha e é le a k körnek é s irá nyuk egyezô j i   ki , j = −1 ha e j é le a ki körnek é s irá nyuk különbözô      0, ha e j nem é le a ki körnek )HOtUMXN D] DOiEEL LUiQ WRWW LUiQ WDWODQ  JUiI .  N|UPiWUL[iW )ROWRQRV YRQDOODO UDM]ROWXN D * JUiI ) IHV]LW{ IiMiQDN

IDYi]iQDN pOHLW Y Y H H H H Y H H Y H Y H H  $ N|U|N LOO pOHN VRUUHQGMpW D] DOiEEL V]DEiO V]HULQW DGMXN PHJ .LMHO|OMN D * JUiI HJ ) IDYi]iW  KD  QHP YROW |VV]HIJJ{ DNNRU PLQGHQ HJHV NRPSRQHQVpQHN PHJDGMXN HJ IDYi]iW (O{V]|UD])IiUDYRQDWNR]yHLN|W{pOHNHWLQGH[HOMN  LWW LYHO  pV D] iOWDOXN PHJKDWiUR]RWW N|U|NHW NLYHO ,WW MHJH]N PHJ KRJ D * JUiI ) IDYi]iUD YRQDWNR]yDQ D] H pO N|W{pOKDQHPpOH)QHN$*JUiI)IHV]tW{IiMDpVHN|W{pOH egyértelmûen meghatározza G-nek egy k körét, mivel F maximális |VV]HIJJ{ N|UW QHP WDUWDOPD]y UpV]JUiIMD YROW *QHN ËUiQ WRWW JUiIRN HO{EE HPOtWHWW DODSN|UHLW )UH YRQDWNR]y N|W{pOHLQHNPHJIHOHO{HQtUiQ WMXN 1  0 0  0 0  1 K1 =  1  1  0 0  0 1  0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0

1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0   0 0 1 0 0 0 0 1 0 0   0 0 0 0 1  0 0 0 0 0   0 1 1 0 0  0  K2 =  −1 0 1 0   1 0 0 1 0   0 0 1 1 0  0 −1 0 1 0   0  0 0 1 −1  1 0 −1 1 0    0 1 1 −1 0 0 1 −1 0 0  0 −1 1 0 0 0 1 0 1 0  0 0 1 1 0 1 0 0 0 0  1 0 0 0 0 0 0 1 1 0  0 1 0 1 0  0 0 1 1 0 0 1 0 1 0  0 1 −1 0 0 0 0 0 0 0  0 0 0 0 0 ËUMXNIHODNRUiEEDQOHUDM]ROW*LOO tUiQ WRWWJUiI LOOHV]NHGpVL$LOO$PiWUL[iWLV 1  1 A1 =  0  0  0 1 1 0 0 0 1 0 0 1 0  −1 1 −1 0   1 −1 0 −1 A2 =  0 0 0 0  0 0 1 1  0 0 0 0 LV 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0  0 0   1  1 0 1 0 0 0  0 0 1 0 0 0 −1 −1 1 0    0 0 0 −1 1   0 0 0 0 −1

9HJN pV]UH KRJ $ .7 1  ]pUXV PiWUL[ pV $ %7 1  7pWHO +D $ * JUiIQDN D] $ LOOHV]NHGpVL LOOHWYH . N|UPiWUL[iQDN RV]ORSDL XJDQD]RQ pOVRUR]DW V]HULQW  UHQGH]HWWHNDNNRU$ .7 1pV $7 1 PRG  ]pUXVPiWUL[RNDWMHO|O   LWW1pV1LV %L]RQ WiV$]LUiQ WiVQpONOLHVHWHWWiUJDOMXNpVRWW LV FVDN D] HOV{W PLYHO DEEyO D PiVRGLN WUDQV]SRQiOiVVDO PHJNDSKDWy+DD]$DLVRUiKR]WDUWR]yYLFV~FVQHPLOOHV]NHGLN D NM N|UUH DNNRU D  V]RU]DWPiWUL[ QLM HOHPH  PLYHO D YLUH LOOHV]NHG{pOHNQHPpOHLDNMN|UQHN+DD]$DLVRUiKR]WDUWR]y YL FV~FV LOOHV]NHGLN D NM N|UUH DNNRU D  V]RU]DWPiWUL[ QLM HOHPH  PLYHO D YLUH LOOHV]NHG{ pOHN N|]O SRQWRVDQ  pOH D NMN|UQHN A csúcsmátrix ,UiQ WRWW pV LUiQ WiV QpONOL JUiIRN HVHWpQ HJIRUPiQ GHILQLiOKDWMXN D FV~FV  YDJ V]RPV]pGRVViJL  PiWUL[RW $ PiWUL[ DLM HOHPH D]RNQDN D] pOHNQHN D V]iPiYDO HJH]LN PHJ

DPHOHNYLE{OIXWQDNYMEHWHUPpV]HWHVHQKDD]HpOLUiQ WiV QpONOL pV ϕ (H) = Y LY M = Y MY L  DNNRU ~J WHNLQWMN KRJ H YL E{OPHJYMEHpVIRUGtWYDLVD]D]HYME{OPHJYLEH$]D]Q FV~FVSRQW~ LUiQ WiV QpONOL * JUiI FV~FVPiWUL[D V]LPPHWULNXV Q QHVNYDGUDWLNXVPiWUL[+DDGRWW$* (ϕ9 JUiIpV 9 Q akkor csúcsmátrixa n*n-es valós elemû mátrix. ( ) ( ) ( ) HILQLFLy $ * (ϕ9  JUiIQDN Vn n = ai , j  FV~FVPiWUL[D KD ai , j = ∑1 ( ϕ ( e ) = vi , v j )  3pOGDËUMXNIHOD]DOiEELtUiQ WRWWJUiIV]RPV]pGRVViJL YDJDGMHFHQFLDPiWUL[iW  Y v1  0 0 0 0 0 0 0 0   Y v2  1 0 0 0 0 0 0 0 v 3  0 1 0 1 1 0 0 0   Y r Y v 4  0 0 0 0 1 0 0 0 Y Y Y V =   eUGHPHV v5 0 1 0 0 0 0 0 0   v 6  0 0 0 0 0 0 1 1 v 7  0 0 0 0 0 0 0 2   v8  0 0 0 0 0 0 0 0 PHJMHJH]QL KRJ D FV~FVPiWUL[ D KXURNpOHNU{O LV LQIRUPiO

7RYiEEiKDD*JUiIFV~FVDLW$PyGRQLQGH[HOYHFV~FVPiWUL[D r r 9 $   LOO % PyGRQ LQGH[HOYH 9%  DNNRU D VRURN pV D] RV]ORSRN DONDOPDVFVHUpMpYHOHOpUKHW{KRJD]HJLNPiWUL[RWiWYLVV]N Y  D PiVLNED 0LYHO XJDQD]RNDW D VRURNDW pV RV]ORSRNDW NHOO IHOFVHUpOQL H]pUW YDQ RODQ 3 SHUPXWiFLy PiWUL[ PHOUH r r 9$ = 3 −19%3 $IHQWLHNEHQOpQHJpEHQEHOiWWXNDN|YHWNH]{WpWHOW 7pWHO +D D * JUiIQDN D FV~FVPiWUL[D $ pV D  JUiIQDN FV~FVPiWUL[D % DNNRU D * pV D  PiWUL[RN L]RPRUILiMiQDN V]NVpJHV pV HOpJVpJHV IHOWpWHOH D] KRJ OpWH]]pN RODQ 3 SHUPXWiFLyPiWUL[PHOUHWHOMHVOKRJ $ = 3 −1%3  $ FV~FVPiWUL[ KDWYiQDLUyO QHP QHKp] EHOiWQL D] DOiEEL WpWHOW ( ) r n r 7pWHO/HJHQD*JUiIFV~FVPiWUL[D9 $  V A QHNY LQ,M HOHPH PHJDGMD * YL pV YM pOVRUR]DWRNQDNDV]iPiW FV~FViW |VV]HN|W{ LUiQ WRWW %L]RQ WiV7HOMHVLQGXNFLyYDO EL]RQ WXQN Q  HVHWpQ D]

iOOtWiVDGyGLNDFV~FVPiWUL[GHILQLFLyMiEyO7HJJNIHOKRJ Q PUH LJD] D] iOOtWiV pV LJD]ROMXN P UH -HO|OMH vi(,k )  D] LQGXNFLyV IHOWHYpV V]HULQW D]RQ P KRVV]~ViJ~ LUiQ WRWW pOVRUR]DWRN V]iPiW PHOHN D] L FV~FVRW D N FV~FFVDO N|WLN m |VV]H 7RYiEEi MHO|OMH vk( ,)j  D] N FV~FVRW D M FV~FFVDO 1 |VV]HN|W{pOHNV]iPiW$ vi(, k ) ⋅ vk( ,)j V]RU]DWPHJDGMDD]LFV~FVEyO D M FV~FVED YH]HW{ RODQ LUiQ WRWW P KRVV]~ViJ~ pOVRUR]DWRN V]iPiW PHOHN D N SRQWUD LOOHV]NHGQHN   PLNRU m 1 1 m LV N M V]RPV]pGMD  N V]HULQW |VV]HJH]YH D vi(, k ) ⋅ vk( ,)j V]RU]DWRNDW PHJNDSMXN D] L FV~FVEyO D M FV~FVED YH]HW{ k =n 1 m+1 m LUiQ WRWW pOVRUR]DWRN V]iPiW PiVUpV]U{O vi(, j ) = ∑ vi(, k ) ⋅ vk( ,)j  DPL k =1 QHPPiVPLQWDFV~FVPiWUL[ P KDWYiQiQDNLMHOHPH ( ) r ,0HJMHJ]pV+DYDODPLOHQQUH V A n DNNRUDJUiIQHP WDUWDOPD]KDWtUiQ WRWWN|UW ,,0HJMHJ]pV$FV~FVPiWUL[ MyO

DONDOPD]KDWy YDODPHO $ KDOPD]RQ DGRWW ρ ELQiULV UHOiFLy WXODMGRQViJDLQDN D MHOOHP]pVpUH$*ρ (ϕ9 JUiIRWDN|YHWNH]{PyGRQUHQGHOMND] $KDOPD]RQDGRWWρELQpUUHOiFLyKR] L *FV~FVSRQWMDL$HOHPHLOHV]QHND]D]$ 9 ( ) ( ) LL  e = ( vi , v j ) ∈ E ⊆ ( A ⊗ A) ⇔ vi ρv j PiVV]yYDOYLWYMYHO DNNRU pV FVDN DNNRU N|WL pO |VV]H KD YL ρ UHOiFLyEDQ iOO YM YHO $ ρ ELQpU UHOiFLy DNNRU pV FVDN DNNRU UHIOH[tY KD r Gρ ( E , ϕ ,V )  JUiI V A  FV~FVPiWUL[iQDN I{iWOyMiEDQ PLQGHQWW  iOO  $ ρ ELQpU UHOiFLy DNNRU pV FVDN DNNRU V]LPPHWULNXV KD r Gρ ( E , ϕ , V ) JUiI V A FV~FVPiWUL[DV]LPPHWULNXV Matroidok $ PDWURLGHOPpOHWHW +DVVOHU :KLWQH DODSR]WD PHJ D lineáris függõség algebrai elméletét vizsgáló 1935-ös dolgozatával. Az elmúlt 62 esztendõben több könyv is megjelent H WiUJN|UEHQ $ PDWURLGHOPpOHW VRN DONDOPD]iVUD WDOiOW D] iUDPN|U|N DQDOt]LVpEHQ NDSFVROiV

HOPpOHWEHQ OLQHiULV SURJUDPR]iVEDQKiOyHOPpOHWEHQpVJUiIHOPpOHWEHQ HILQtFLy $] 0 ( ,  UHQGH]HWW SiUW PDWURLGQDN nevezzük, ha rendelkezik a következõ tulajdonságokkal, E véges KDOPD]pV, rendelkezik a következõ tulajdonságokkal:   ∅ ∈ , D]D]D]UHVKDOPD]HOHPH,QHN   KD [∈ , pV ⊆[ DNNRU ∈,QHN D]D] , EiUPHO [ HOHPpQHNEiUPHOUpV]KDOPD]DLVPpWHOHPH,QHN   KD ,S,S∈ , QHN pV ,S ,S DNNRU  ∃[ ∈ , S+ ( ) RODQ KRJ , S ∪ {[ } ∈ ,   H GHILQtFLyQiO D] ,  pV , XJDQD]W MHOHQWL  3pOGiN L  /HJHQ * (ϕ, V) egy egyszerû gráf és , MHO|OMH  ( pOHLQHN RODQ UpV]KDOPD]DLW DPHOHN *QHN N|UPHQWHV UpV]JUiIMDLWMHO|OLNNLHNNRUD] (, SiUUHQGHONH]QLIRJD PDWURLGRNWyOPHJN|YHWHOWWXODMGRQViJRNNDO LL  /HJHQ (  D]  0 PiWUL[ RV]ORSYHNWRUDLQDN D KDOPD]D D]D] ( ^ PPP PMPV`  ( OLQHiULVDQ IJJHWOHQ RV]ORSYHNWRUDLQDN D KDOPD]iW MHO|OMN , YHO

HNNRU D] ( , SiUPDWURLGRWDONRW $]RNDW D] 0 ( ,) matroidokat, amelyeknél E tekinthetõ YDODPHO * JUiI pOHL KDOPD]iQDN pV  ,  HOHPHL D  N|UPHQWHV UpV]JUiIMDLpOHLKDOPD]iQDNJUDILNXVPDWURLGRNQDNPRQGMXN $]RNDW D] 0 ( ,) matroidokat, amelyeknél E tekinthetõ YDODPHO PiWUL[ RV]ORSYHNWRUDL KDOPD]iQDN pV , D IJJHWOHQ RV]ORSYHNWRURN KDOPD]iQDN D KDOPD]DNpQW PiWUL[PDWURLGQDN PRQGMXN $ PDWURLGHOPpOHW VRN HOQHYH]pVW IRJDOPDW YHWW iW D lineáris algebrából ill. a gráfelméletbõl Kedves Olvasónknak ezekbõl nyújtunk át egy csokorra valót. Kicsit ömlesztve  mellõzve ez egyszer a formákat, reméljük ez nem vezet IpOUHpUWpVUH $] , HOHPHLW IJJHWOHQ KDOPD]RNQDN QHYH]]N $] ,KDOPD]%HOHPpWEi]LVQDNQHYH]]NKDPD[LPiOLVDQIJJHWOHQ Itt a maximális jelzõ nyilván abban az értelemben értendõ, KRJ ( EiUPHOLN RODQ $ UpV]KDOPD]iW LV YHJN DPHOLN YDOyGL PyGRQ WDUWDOPD]]D %W %⊂$   DNNRU D] $

QHP HOHPH , nek. Az E tetszõleges A részhalmazának a UDQJMiQ U $ Q D] $ PD[LPiOLVDQ IJJHWOHQ UpV]KDOPD]iQDN D] HOHPHLQHN D V]iPiW pUWMN +D ( YDODPHO $ UpV]KDOPD]D QHP HOHPH , QHN DNNRU azt függõnek mondjuk. Az A ( $ ⊆ ( UpV]KDOPD]OH]iUWMiQ YDJ $ iOWDO IHV]tWHWW  D]W D]  VS $  KDOPD]W pUWMN PHOQHN UDQJMDPHJHJH]LN$UDQJMiYDOpVPD[LPiOLV0D[LPiOLVDEEDQD] pUWHOHPEHQ KRJ QHP OpWH]LN RODQ VS $ ¶ KDOPD] PHOQHN D UDQJMD XJDQFVDN PHJHJH]QH $ UDQJMiYDO pV YDOyGL PyGRQ WDUWDOPD]QiVS $ W Egy minimálisan függõ K halmazt N|UQHN QHYH]]QN Minimálisan függõ nyilván abban az értelemben, hogy K-nak semelyik valódi részhalmaza sem lesz függõ, azaz K bármely YDOyGL UpV]KDOPD]D PiU HOHPH , QHN GH PDJD . QHP HOHPH ,  QHN 7pWHO /HJHQ ; < IJJHWOHQ UpV]KDOPD]RN 0EHQ +D ; HOHPHLQHN D V]iPD NHYHVHEE PLQW < HOHPHLQHN D V]iPD D]D] ;  <  DNNRU OpWH]LN RODQ

=⊆<; KRJ ; ∪ = <  pV ;∪= IJJHWOHQ0EHQ %L]RQ WiV/HJHQ= RODQKRJUHQGHONH]]pND]DOiEEL WXODMGRQViJRNNDO  L =⊆<; LL ;∪= IJJHWOHQ0EHQ LLL  +D ; ∪ =  ≥ ; ∪ =  ;∪= IJJHWOHQ 0EHQ pV =⊆<; DNNRU 7HJNIHOKRJOpWH]LNRODQ=KRJ ; ∪ =  < < HNNRU OpWH]LN HJ RODQ <⊆< PHOUH <  ; ∪ =  +  0LYHO < IJJHWOHQ OHKHW DONDOPD] D PDWURLGRN  D[LyPiMiW /pWH]LN ∈<  − (; ∪ =  ) RODQ KRJ ; ∪ =  ∪ {}  IJJHWOHQ 0EHQ GH D =  ∪ {}  OpWH]pVH HOOHQWPRQG LLL QHN (]pUW ; ∪ =  ≥ <  V H]]HO D EL]RQ WiV NpV] .|YHWNH]PpQ $] 0 PDWURLG EiUPHO % Ei]LViQDN D] HOHP V]iPDPHJHJH]LN0UDQJMiYDO  %L]RQ WiV /HJHQ  %   % , akkor az elõzõ tétel V]HULQW OpWH]LN RODQ =⊆ ^ %  % ` RODQ  KRJ =∪ %  IJJHWOHQDPLYLV]RQWHOOHQWPRQG % PD[LPiOLV .|YHWNH]PpQ +D  % 

pV  %  Ei]LVDL 0QHN pV [ ∈ % − %   ( ) DNNRU OpWH]LN RODQ ∈% − %  PHOUH WHOMHVO KRJ % ∪ {} − {[ } Ei]LVD0QHN %L]RQ WiVQpONOPHJHPOtWMN LWW QpKiQ WXODMGRQViJiW D UDQJIJJYpQQHN 7pWHO /HJHQ DGRWW D] 0 [∈(HNNRU ( ,   PDWURLG pV $%⊆( pV   ≤ U($ ) ≤ $  +D$⊆%DNNRUU $ ≤ U %  ( )  U($ ) ≤ U $ ∪ {[ } ≤ U($ ) +  4. Részmoduláris egyenlõtlenség U($ ) + U(% ) ≥ U($ ∪ % ) + U($ ∩ % )  ( ) U($ ∪ {}) +D U $ ∪ {[ } ( ) U $ DNNRU U $ ∪ {[ } ∪ {} U $  Ha az E n elemû halmaz k ( ≤ N ≤ Q) elemû részhalmazainak a KDOPD]iW YiODV]WMXN , QHN DNNRU HJ 0 PDWURLGRW NDSXQN PHOHW XQLIRUP PDWURLGQDN V]RNiV QHYH]QL -HOH 8QN $] 8QQ PDWURLGRW V]DEDG PDWURLGQDN PRQGMXN PLYHO ( EiUPHO UpV]KDOPD]D IJJHWOHQ D] 8Q PDWURLGRW WULYLiOLV PDWURLGQDN QHYH]]NPLYHOFVDND]UHVKDOPD]∅IJJHWOHQEHQQH 1HP QHKp] EHOiWQL

8 QHP OHKHW JUDILNXV PDWURLG PLYHO nincs olyan 4 élû gráf, hogy bármely 3 éle kört alkosson. A körökkel kapcsolatos következõ állítások közvetlenül a GHILQtFLyN|YHWNH]PpQHL  %iUPHON|UEiUPHOYDOyGLUpV]KDOPD]DIJJHWOHQ+D &pV& különbözõ körök, akkor C⊄&  +D&N|UDNNRUU & &  $]0PDWURLGEDQDNNRUpVFVDNDNNRUQLQFVN|UKD( PLQGHQ UpV]KDOPD]D IJJHWOHQ HNNRU 0QHN FVDN HJ Ei]LVD YDQ WLPDJD(  Gráfok színezése $ QyEDQ VRKD QH IHOHGMN NH]G{L PLYROWXQNDW 9HNHUG 7DPiV A színészi hatás eszközei-Zeami mester mûvei szerint, *RQGRODW    R *UiIRN VtNED UDM]ROKDWyViJiUyO EHV]pOYH GHILQLiOWXN D WDUWRPiQ LOOHWYH RUV]iJ  IRJDOPiW 7pUNpSHN V]tQH]pVpQpO V]RNiVRV HOMiUiV D] KRJ V]RPV]pGRV RUV]iJRNDW NO|QE|]{ V]tQHNNHO V]tQH]QHN NL .pW RUV]iJRW V]RPV]pGRVQDN V]RNiV QHYH]QL KD D N|]|V KDWiUXN KRVV]D QiO QDJREE V]iP D]D]

YDQN|]|VpON$*VtNEHOLJUiIRWNV]tQH]KHW{QHNPRQGMXNKD * WDUWRPiQDLW NL OHKHW IHVWHQL N V]tQQHO RO PyGRQ KRJ EiUPHO NpW szomszédos ország különbözô színû +D D] DGRWW VtNED UDM]ROKDWy * JUiI GXiOLVD  DNNRU D  N V]tQQHO YDOy V]tQH]KHW{VpJH * UH YRQDWNR]yODJ D]W MHOHQWL KRJ FV~FVDLW NL OHKHW V]tQH]QL N V]tQQHO RO PyGRQ KRJ V]RPV]pGRV FV~FVRN V]tQHL NO|QE|]{HN $]D] *  EiUPHO pOpQHN két végpontja különbözô színû. A színezési probléma duális JUiIUD YDOy iWIRJDOPD]iVD OHKHW{VpJHW DG DUUD KRJ WHWV]{OHJHVJUiIV]tQH]KHW{VpJpU{OEHV]pOMQN HILQtFLy $ * JUiI NURPDWLNXV V]iPD N KD  FV~FVDL N V]tQQHONLV]tQH]KHW{NGHNHYHVHEEHO N HOPiUQHP EHQ 0|ELXV HJ HO{DGiViEDQ PHJIRJDOPD]WD D QpJV]tQVHMWpVWPHOD]WiOOtWMDKRJEiUPHOVtNEHOLWpUNpS NLV]tQH]KHW{V]tQQHO$VHMWpVWH0RUJDQWHWWHLVPHUWpÐD SUREOpPiW)UDQFL*XWKULHWyOYHWWHiWN|UO&DOH EHQ

MHOHQWHW PHJ HJ GROJR]DWRW D QpJV]tQVHMWpVU{O D 3URF 5RDO *HRJUDSKLFDO 6RFLHW HOV{ N|WHWpEHQ EHQ +HDZRRG HJ .HPSHW{O V]iUPD]y KLEiV EL]RQ WiVW YL]VJiO pV VLNHUO EHEL]RQ WDQLD KRJ VtNJUiIRNQiO |W V]tQ HOHJHQG{ D V]tQH]pVKH]$QpJV]tQVHMWpVUH.$SSHOpV:+DNHQEDQ V]iPtWyJpS IHOKDV]QiOiViYDO DGWDN EL]RQ WiVW %L]RQ WiVXNEDQ D]RQEDQ D]yWD W|EEHQ pV W|EEV]|U LV WDOiOWDN KLEiW GH D]RN MDYtWKDWyQDN EL]RQXOWDN $ PDWHPDWLNXVRN HJUpV]H $ YLWDWMD D]W KRJ HJ WpWHOQHN D % V]iPtWyJpSHV EL]RQ WiVD HOIRJDGKDWy & H $ WRYiEELDNEDQ VtNEHOL JUiIRNUyO V]HUHWQpQN PHJPXWDWQL KRJ |W V]tQQHO PLQGLJ NL V]tQH]KHW{N $]W EHOiWQL KRJ OHJDOiEE  V]tQ szükséges, könnyû. Például a tetraéder síkba rajzolt gráfja FVDNV]tQQHOV]tQH]KHW{NL  +D D * JUiIXQN Y SRQWMD PiVRGIRN~ pV YUH HH LOOHV]NHGHWW  ϕ H XY pV ϕ H YZ  DNNRU YW W|U|OYH pV Y HH pOHN KHOHWW HJ H  pOW

EHYH]HWYH  ϕ H XZ  D V]tQH]pV PyGMD YiOWR]DWODQ PDUDG YLV]RQW D] ~M JUiIXQNEDQ HJJHO NHYHVHEE PiVRGIRN~ SRQW OHV] (OpUKHW{  KRJ RODQ VtNEHOL JUiIRNNDO IRJODONR]XQN DPHOHNQHN QLQFVHQ PiVRGIRN~ FV~FVSRQWMDL +D YDODPHO SRQW IRND QiO QDJREE DNNRU D * JUiIXQNDW iWDODNtWKDWMXN RO PyGRQ KRJ D NLV]tQH]KHW{VpJH QH YiOWR]]pN GH OHJIHOMHEE FVDN KDUPDGIRN~ SRQWMD OHJHQ /HJHQD]DSRQWSpOGiXOD]iEUiQDNPHJIHOHO{HQ|W|GIRN~SRQW 5DM]ROMXQNN|UO|WWHHJ&N|UW6D]DSRQWKHOHWWYH]HVVQN EH~MSRQWRWPHOHNPLQGHJLNHPiUKDUPDGIRN~+DH]XWyEEL JUiI NLV]tQH]KHW{ DNNRU NLV]tQH]KHW{ OHV] D] HUHGHWL LV (OHJHQG{ D]W OiWQL KRJ KD D] ~M JUiI & N|UpW SRQWWi ]VXJRUtWMXN V D N|UW KDWiUROy WDUWRPiQRN V]tQH]pVpW YiOWR]DWODQXOKDJMXNDNNRUDUpJLJUiIQDNHJMyV]tQH]pVpW NDSMXN (]HN V]HULQW VtNEHOL JUiIRN V]tQH]KHW{VpJpW VLNHUOW YLVV]D YH]HWQL DUUD D] HVHWUH PLNRU LV D JUiI PLQGHQ SRQWMD

KDUPDGIRN~ $] DOiEELDNEDQ EHEL]RQ WXQN HJ WpWHOW PHO D]W PRQGMD KRJ EiUPHO VtNED UDM]ROKDWy  JUiIQDN YDQ RODQ WDUWRPiQD PHOHW  YDJ |WQpO NHYHVHEE pO KDWiURO +D VLNHUO PHJPXWDWQXQN KRJ D] |W YDJ |WQpO NHYHVHEE pOOHO KDWiUROW WDUWRPiQRN PLQGLJ HOKDJKDWyN DQpONO KRJ D PHJYiOWR]RWW JUiI V]tQH]KHW{VpJH YiOWR]QD DNNRU YpJH]HWO LV PHJROGRWWXN D] |WV]tQWpWHO EL]RQ WiViW $  ROGDORQ V]HUHSO{   IRUPXOD V]HULQW 2T = 2 ⋅ ϕ 2 + 3 ⋅ ϕ 3 + 4 ⋅ ϕ 4 + . + N ⋅ ϕ N +   DKRO LV T D] pOHN V]iPiW ϕL  D] L GDUDE pO iOWDO KDWiUROW WDUWRPiQRNV]iPiWMHO|OWH+DD*JUiIXQNFV~FVDLQDNDV]iPiW QMHO|OLDNNRU (S 2) 3n = 2 ⋅ ϕ 2 + 3 ⋅ ϕ 3 + 4 ⋅ ϕ 4 +.+ k ⋅ ϕ k +  WRYiEEi PLYHO W D] bg |VV]HV WDUWRPiQ V]iPiW MHO|OWH  6 3 W = ϕ 2 + ϕ 3 + ϕ 4 +. + ϕ N +  6]RUR]]XNPHJDWPDO6WYHOpV6WWDOHNNRU 6T = 6 ⋅ ϕ 2 + 9 ⋅ ϕ 3 + 12 ⋅ ϕ 4 + . +3N ⋅ ϕ N + b6

2g6Q = 4 ⋅ ϕ 2 + 6 ⋅ ϕ 3 + 8 ⋅ ϕ 4 + . +2N ⋅ ϕ N +  b6 3g6W = 6ϕ 2 NDSMXN + 6ϕ 3 + 6ϕ 4 + . +6ϕ N + D & & +D D] HXOHUIRUPXOiW YpJLJV]RUR]]XN WDO DNNRU 12 = 6Q − 6T + 6W DGyGLNVDIHQWL NpSOHWHNHWEHKHOHWWHVtWYH b6 4g12 = 4ϕ 2 + 3ϕ 3 + 2 ϕ 4 + ϕ 5 − ϕ 7 − 2 ϕ 8 − . − (N − 6) ϕ N + DGyGLN $] 6HV IRUPXOD MREE ROGDOiQDN SR]LWtYQHN NHOO OHQQLH H]pUW KDUPDGIRN~ UHJXOiULV JUiIQDN YDQ OHJDOiEE HJ RODQ WDUWRPiQD PHOHW  YDJ QpO NHYHVHEE pO KDWiURO $]D] EHEL]RQ WRWWXNDN|YHWNH]{WpWHOW 7pWHO+DD*JUiIVtNEDUDM]ROKDWyKDUPDGIRN~UHJXOiULV JUiI DNNRU YDQ RODQ WDUWRPiQD PHOHW OHJIHOMHEE  pO KDWiURO $] |WV]tQWpWHO EL]RQ WiViKR] UHQGUH PHJPXWDWMXN KRJ KDD*JUiIXQNQDNNHWW{KiURPQpJYDJ|WpOiOWDOKDWiUROW WDUWRPiQiW HOKDJMXN pV D] ~M *  JUiI |W V]tQQHO MyO V]tQH]KHW{ DNNRU * LV V]tQH]KHW{ OHJIHOMHEE |WV]tQQHO 6 PLYHO D *E{O V]iUPD]WDWRWW

JUiIRN WDUWRPiQDLQDN D V]iPD UHQGUH FV|NNHQQL IRJ HO{EE YDJ XWyEE HOMXWXQN HJ RODQ * Q JUiIKR] PHOQHN OHJIHOMHEE |W WDUWRPiQD YDQ V DNNRU D] PiU WULYLiOLVDQ V]tQH]KHW{ |WV]tQQHO 7HKiW D] |WV]tQWpWHO EL]RQ WiViKR] HOHJHQG{ PHJPXWDWQL KRJ KD D * JUiIQDN HOKDJMXN HJ N (2 ≤ k ≤ 5)  pOOHO KDWiUROW WDUWRPiQiW V D QHUW *  JUiI OHJIHOMHEE  V]tQQHO MyO V]tQH]KHW{ DNNRU  LV MyOV]tQH]KHW{V]tQQHO , 7HJNIHOD*KDUPDGIRN~UHJXOiULVVtNEDUDM]ROKDWy JUiIXQNQDNYDQHJ$WDUWRPiQDPHOHWD]DpVEFV~FVRNUD LOOHV]NHG{  pO KDWiURO /HJHQ D] D FV~FV PiVLN V]RPV]pGRV FV~FVD F pV E V]RPV]pGMD G 7|U|OMN D] D LOO E FV~FVRNDW pV D UiMXN LOOHV]NHG{ pOHNHW $ F LOO G FV~FVRNDW N|VVN |VV]H HJ ~M pOOHO +D D] $ D % pV & WDUWRPiQRNNDO % YROWKDWiURVPHOHNHWD],LOO,, , V]tQUH IHVWHWWQN pV $W ,,,UD DNNRU +D D] ~M *  JUiI % LOO & $

WDUWRPiQiQDN  D V]tQH]pVH , LOO ,,, & ,, DNNRU D] HUHGHWL iOODSRW KHOUHiOOtWiVD HVHWpQ  $ V]tQH ~MUD OHKHW ,,, V QHP NHOO YiOWR]WDWQL D * JUiIQDNHVHWOHJPHJOpY{W|EELWDUWRPiQiQDNDV]tQH]pVpQ F D E G ,,  ,,  +D D * JUiI D KiURPV]|JWDUWRPiQW WDUWDOPD]]D PHOHW D] $ % & WDUWRPiQRN $ KDWiUROQDN DNNRU D] DE FV~FVRNDW W|U|OYH HJHVtWVN D  pV D & % WDUWRPiQW V MHO|OMN PRQGMXN & YHO $] tJ QHUW *  JUiIQDN KD & D] $ ,YHO% ,,YHO pV & WDUWRPiQD ,,,YHO YDQ V]tQH]YH DNNRUD&WDUWRPiQWDYLVV]DiOOtWiVXWiQ,9YHOV]tQH]]N , ,, ,9 E D ,,, ,,,  7DUWDOPD]]D PRVW D * JUiIXQN D] ) WDUWRPiQW PHOHW QpJ ROGDO pV tJ QpJ WDUWRPiQ KDWiURO V MHO|OMH D]RNDW UHQGUH $%& $ QpJ WDUWRPiQ N|]O D V]HPEH IHNY{N N|]O IHOWpWOHQO YDQ NHWW{ P Q RODQ PHOHN QHP V]RPV]pGRVDN $] iEUiQNQDN PHJIHOHO{HQ OHJHQ % ,, D D] D NHWW{ PRVW % pV 

U (JHVtWVN D %) pV E S ,,, 9 WDUWRPiQRNDW RO PyGRQ KRJ D $ ) & ESXF SRQWRNDW pV D , F X UiMXN LOOHV]NHG{ pOHNHW G Y W|U|OMN 9DODPLQW D] DLOO G ,9 FV~FVRNDW pV D] U LOO Y FV~FVRNDW HJHJ ~M pOOHO N|WMN |VV]H $] LO PyGRQ QHUW *  JUiIQDN NHWW{YHO NHYHVHEE WDUWRPiQDYDQPLQW*QHNpVKDUPDGIRN~UHJXOiULVJUiI+D V]tQH]pVpEHQ $ LOO & V]tQH , LOO ,,, pV %) V]tQH ,, DNNRUDYLVV]DiOOtWiVXWiQ)V]tQHOHJHQ,9pVV]tQH,, ,9  /HJHQ PRVW * RODQ KRJ WDUWDOPD]]D D] $%&( ( H $ E D ) G F % & WDUWRPiQRN iOWDO KDWiUROW |WV]|JWDUWRPiQW +DVRQOy RNRVNRGiVVDO PLQW D] HO{EE EHOiWKDWy KRJ YDQ RODQ NpW WDUWRPiQ D] $%&( WDUWRPiQRN N|]|WW PHOHN QHP V]RPV]pGRVDN OHJHQHN D]RN SpOGiXO % pV  7|U|OMN *QHN EF W LOO HG W |VV]HN|W{ pOHLW ,WW HO{IRUGXOKDW KRJ D] $&( WDUWRPiQRN V]RPV]pGRVDN pV V]tQH]pVNK|] KiURP NO|QE|]{ V]tQ

NHOO PRQGMXN OHJHQHN D]RN UHQGUH ,,,,,, D QHJHGLN ,9 V]tQ )% V]tQH]pVpKH] NHOO 6 D] HUHGHWL JUiI YLVV]DiOOtWiViQiO D  pV % WDUWRPiQRN V]tQH OHKHW ,9 GH ) V]tQH]pVpKH] PiU IHO NHOO KDV]QiOQL D] 9 |W|GLN V]tQW ,O PyGRQEHEL]RQ WRWWXND]DOiEELWpWHOW 7pWHO  |WV]tQWpWHO  %iUPHO VtNED UDM]ROKDWy VRNV]|J JUiINLV]tQH]KHW{|WV]tQQHO  Ramsey-féle problémák HILQLFLy$]Q PN V]iPRW5DPVHIpOHV]iPQDNQHYH]]N KDUHQGHONH]LND]DOiEELWXODMGRQViJRNNDO L  KD D * (ϕ9  JUiIQDN D FV~FVSRQWMDLQDN D V]iPD V = n ≥ n(m, k )  DNNRU YDJ * QHN YDQ HJ P FV~FVSRQW~ WHOMHV UpV]JUiIMD YDJ * NRPSOHPHQWHUH WDUWDOPD] HJ N FV~FVSRQW~ WHOMHVJUiIRW LL YDQRODQ* ( ϕ 9 JUiIPHOQHNFV~FVSRQWMDLQDN DV]iPD V = n(m, k ) − 1 pV* QHNQLQFVPSRQW~WHOMHVUpV]JUiIMD pVDNRPSOHPHQWHUpQHNVLQFVNSRQW~WHOMHVUpV]JUiIMD $] LL  WXODMGRQViJJDO UHQGHONH]{ JUiIRNDW H[WUpP JUiIRNQDN QHYH]]N

6]HPOpOHWHVHEE PHJIRJDOPD]iVD D 5DPVH IpOH V]iPRNQDN D N|YHWNH]{ +D D] Q PN  SRQW~ WHOMHV JUiI pOHLW WHWV]pV V]HULQW SLURVUD YDJ ]|OGUH V]tQH]]N DNNRU vagy egy piros színû teljes m gráfot vagy egy zöld színû k WHOMHV JUiIRW NDSXQN WRYiEEi D] Q PN  SRQW~ WHOMHV JUiI pOHLW SLURV LOOHWYH ]|OG V]tQQHO OHKHW ~J V]tQH]QL KRJ VHP piros színû teljes m csúcspontú, sem zöld színû teljes k FV~FVSRQW~JUiIRWQHPWDUWDOPD] 57 7pWHO+D ∀P , N ∈ 1 DNNRU n(m, k ) = n(k , m)  %L]RQ WiV$V]tQHNIHOFVHUpOpVpYHODGyGLND]iOOtWiV 57 7pWHO+D ∀P , N ∈ 1 DNNRU n(1, k ) = n(m,1) = 1 n(2, k ) = k , n(m,2) = m  %L]RQ WiV $] HJ SRQWEyO iOOy JUiI QHP OpWH]{ pOpW HJDUiQW WHNLQWKHWMN SLURVQDN LOO ]|OGQHN LV +D D N SRQW~ WHOMHV JUiIQDN PLQGHQ V]tQH ]|OG DNNRU WDUWDOPD] HJ ]|OG színû teljes gráfot, ha csak egy éle is piros, akkor tartalmaz HJ  SRQW~ WHOMHV SLURV JUiIRW +D D] P SRQW~

WHOMHV JUiIQDN minden színe piros, akkor tartalmaz egy piros színû teljes JUiIRW KD FVDN HJ pOH LV ]|OG DNNRU WDUWDOPD] HJ  SRQW~ WHOMHV]|OGJUiIRW 57 7pWHO+DQ PN pV PN OpWH]LNDNNRUQ PN LVOpWH]LNpVQ PN ≤Q PN Q PN   %L]RQ WiV /HJHQ DGRWW D .Q PN Q PN  WHOMHV JUiI pV pOHLWHWV]{OHJHVHQV]tQH]YHSLURVVDOLOO]|OGGHOpVOHJHQX YDODPHOFV~FVSRQWMD-HO|OMHD*D]XEyOLQGXOySLURVpOHNpV * D] XEyO LQGXOy ]|OG pOHN YpJSRQWMDL iOWDO IHOIHV]tWHWW UpV]JUiIMDLW .Q PN Q PN QDN /HJHQ * FV~FVSRQWMDLQDN D V]iPDQpV*FV~FVSRQWMDLQDNDV]iPDQHNNRU Q1 + Q2 + 1 = Q(P -1,N )+ Q(P ,N -1) SLURV pOHN pV YDJ ,  Q1 ≥ Q(P -1,N ) YDJ ]|OG pOHN ,,  Q2 ≥ Q(P ,N -1) $] ,  HVHWEHQ * YDJ HJ P SRQW~ WHOMHV * * SLURVJUiIRWWDUWDOPD]pV*KH] KR]]iYpYH XW pV D] XEyO *EH X IXWy SLURV pOHNHW .Q PN Q PN  QHN HJ P SRQW~ WHOMHVHQ SLURVUpV]JUiIMiWNDSMXNKD*

EHQ N SRQW~ WHOMHV ]|OG UpV]JUiIXQN YROW DNNRU D] QLOYiQ UpV]JUiIMD .Q PN Q PN  QHNLVËJD] , HVHWEHQ.Q PN Q PN WDUWDOPD]YDJHJP SRQW~ WHOMHV SLURV YDJ HJ N SRQW~ WHOMHV ]|OG JUiIRW $ ,,  HVHWEHQ LV WHOMHVHQ KDVRQOyDQ EHOiWKDWy KRJ .Q P N Q PN WDUWDOPD]YDJHJPSRQW~WHOMHVSLURVYDJHJN SRQW~WHOMHV]|OGJUiIRWVH]]HODEL]RQ WiVNpV] 57 7pWHO (UG{V3iOpV6]HNHUHV*|UJ +D ∀P , N ∈ 1  m + k − 2 DNNRU n(m, k ) ≤    m−1  %L]RQ WiV N V]HULQWL WHOMHV LQGXNFLyYDO EL]RQ WXQN N  HVHWpQ WHWV]{OHJHV PUH Q P  5  V]HULQW pV PLYHO  m + 1 − 2 1≤    H]pUW HNNRU D] iOOtWiV LJD] 7pWHOH]]N IHO KRJ  m−1  D] iOOtWiVXQN WHWV]{OHJHV PUH LJD] N K HVHWpQ pV EL]RQ WVXN N KUD (] XWyEEL iOOtWiVW P V]HULQWL WHOMHV  1 + h − 2 LQGXNFLyYDO EL]RQ WMXN P  HVHWpQ 1 ≤    7HJN IHO  1− 1  KRJ P UH

PiU LJD] D] iOOtWiV  EL]RQ WVXN PUH (]HN V]HULQWWXGMXNKRJ  m + h − 3  m + h − 3 L  n(m − 1, h) ≤   pV n(m, h − 1) ≤    m−2   m −1  $] 57 V]HULQWHNNRUOpWH]LNQ PN pVNLVHEEHJHQO{ PLQWD]Q PN Q PN )HOKDV]QiOYDD] L EHFVOpVHNHW  m + k − 3  m + k − 3 (m + k − 3)! + (m + k − 3)! n(m, k ) ≤   + =  m − 2   m − 1  (k − 1)!(m − 2)! (k − 2)!(m − 1)!     m + k − 2 m−1 k −1  = = (m + k − 3)! +   (k − 1)!(m − 1)! (k − 1)!(m − 1)!  m − 1  PHJNDSMXNDWpWHOiOOtWiViW /HJHQHN U T T  T  HJQpO QDJREE YDJ HJJHO HJHQO{ HJpV] V]iPRN $] N (q1 , q2 ,., qt , r )  iOWDOiQRV  5DPVHV]iP KD HOHJHWWHV]DN|YHWNH]{IHOWpWHOHNQHN W  +D S ≥ N (q1 , q2 ,., qt , r )  DNNRU EiUPLOHQ Pr (S ) $ ∪ $ ∪∪ $ W HVHWpQ OpWH]LN RODQ i ∈{1,2,., t }  pV S , ⊆ S ,

hogy S , qi  pV KRJ Pr ( S , ) ⊆ Ai  D] N (q1 , q2 ,., qt , r ) QpO NLVHEE V]iP QHP UHQGHONH]LN D] HV WXODMGRQViJJDO  D]D] N (q1 , q2 ,., qt , r )  D OHJNLVHEE RODQ HJpV]DPHOUHD]WXODMGRQViJWHOMHVO 7pWHO$] N (q1 , q2 ,., qt ,1) q1 + q2 ++ qt − t + 1  0HJMHJ]pV Az elõbbiekben szereplô n(m,k) az N (m, k ,2) VSHFLiOLV HVHWQHN IHOHO PHJ $ Pr ( S ) az S halmaz r elemû UpV]KDOPD]DLQDNDKDOPD]iWMHO|OWH Generátorfüggvények, rekurzív sorozatok 7HUPpV]HWHV V]iPRN KDOPD]iQ JDNUDQ pUWHOPH]QHN RODQ valós esetleg komplex értékû f(n) függvényeket, melyeknek az n KHOHQ IHOYHWW pUWpNHL D]  Q  KHOHNHQ IHOYHWW pUWpNHLW{O IJJQHN 3pOGiXO HJ  pYH IHQQiOOy YiOODONR]iV DODSW{NpMH QLOYiQ IJJ D] HO{]{ pYHNEHQ D] DODSW{NH Q|YHOpVpUH HVHWOHJ FV|NNHQWpVpUH IRUGtWRWW |VV]HJHN QDJViJiWyO EiU H]HQ |VV]HIJJpVHN NLYiOWNpSS QDSMDLQNEDQ HOpJJp N|G|VHN OHKHWQHN 0L LWW FVXSiQ RODQ UHNXU]tY

|VV]HIJJpVHNNHO IRJXQN IRJODNR]QL PHOHW PDWHPDWLNiQ EHOO OLQHiULVDQUHNXU]tYVRUR]DWRNQDNV]RNiVQHYH]QL HILQtFLy$] 5.,  un + k = a k −1 u n + ( k −1) + a k − 2 u n + ( k − 2 ) ++ a 1 u n +1 + a 0 u n  D]DLNYDOyVYDJNRPSOH[NRQVWDQVRN NpSOHWWHOpVD] X0 ,X1 ,X2 ,.,XN − 2 ,XN −1 NH]G{ pUWpNHNNHO DGRWW VRUR]DWRW k-ad rendû OLQHiULVDQUHNXU]tYVRUR]DWQDNQHYH]]N Másodrendû lineáris rekurzív sorozatok körébôl máig a legnépszerûbb, s valószínûleg a legrégibb példa a FibonacciVRUR]DW X0 = 0, X1 = 1, X2 = 1, X3 = 2 , X4 = 3, X5 = 8, ., XQ + 2 = XQ +1 + XQ  /HRQDUGR)LERQDFFL  HUHGHWL QHYH /HRQDUGR 3LVDQR SLVDL Leonardo)) Liber Abaki ( könyv az abakuszról ) c. mûvében MHOHQLN PHJ HO{V]|U $ )LERQDFFLVRUR]DW D N|YHWNH]{ SUREOpPiEyO NHOHWNH]HWW +iQ SiU Q~O V]iUPD]KDW HJHWOHQ SiUWyOKD L  PLQGHQ SiU KDYRQWD HJ SiUW QHP] DPHO D PiVRGLN KyQDSWyONH]GYHOHV]QHP]{NpSHVpV LL

PLQGHJLNQ~OKDOKDWDWODQ" HILQtFLy$] 5., k-ad rendû lineáris rekurzív sorozat NDUDNWHULV]WLNXVSROLQRPMiQDNQHYH]]NDN|YHWNH]{SROLQRPRW 5.  f ( x ) = x k − a k −1 x k −1 − a k − 2 x k − 2 −− a 2 x 2 − a 1 x − a 0  +D D] 5.  J|NHL α 1 , α 2 ,, α N  SiURQNpQW NO|QE|]{HN DNNRU DVRUR]DWQWDJMDIHOtUKDWy 5.  u n = c k α nk + c k −1α nk −1 ++ c2 α n2 + c1α 1n DODNEDQ +D D]RQEDQ FVDN PQ  J|NQN YDQ V D] L J|N PXOWLSOLFLWiVDVLDNNRUVRUR]DWXQNQWDJMDD]DOiEELDODNEDQ tUKDWy 5.  X = Q L =P ∑α L Q L F + F α + + F L  L  = L L VL α − VL L − +F α L VL VL L −  /iWKDWyKRJDVRUR]DWiOWDOiQRVDODNMDWHOMHVHQDQDOyJ D] iOODQGy HJWWKDWyM~ OLQHiULV GLIIHUHQFLiO HJHQOHWHN PHJROGiViYDO 7pWHO +D D] un + k = a k −1 u n + ( k −1) + a k − 2 u n + ( k − 2 ) +.+ a 1 u n +1 + a 0 u n |VV]HIJJpVW D =1 (]1,1 ,]1,2 ,.,]1,M ,) =2 (]2,1 ,]2,2 ,,]2,M ,)

=N (]N ,1 ,]N ,2 ,,]N ,M ,) VRUR]DWRN NLHOpJtWLN DNNRU WHWV]{OHJHV F1 , F2 ,., FN  NRQVWDQVRN HVHWpQ NLHOpJtWL D 9 (Y 1 ,Y 2 ,.,Y M ,)  VRUR]DW LV DKRO v j = c1 z1, j + c2 z 2 , j +.+ c k z k , j  ( M = 0,1, 2 ,, Q ,)  %L]RQ WiV $ WpWHO IHOWpWHOHL V]HULQW EiUPHO L = 1, 2 ,., N pV (Q = N , N + 1, N + 2 ,., K,) HVHWpQWHOMHVOQHND]DOiEELD]RQRVViJRN  5.  z i ,n + k = a k −1 z i ,n + ( k −1) + a k − 2 z i ,n + ( k − 2 ) ++ a1 zi ,n +1 + a 0 z i ,n  6]RUR]]XN PHJ D] LW FLYHO PDMG DGMXN |VV]H {NHW  HNNRUIHOKDV]QiOYDD]WKRJY M = F1]1,M + F2]2 ,M +. +FN]N ,M DGyGLNKRJ  v n + k = a k −1 v n + ( k −1) + a k − 2 v n + ( k − 2 ) +.+ a1 v n +1 + a 0 v n V H] D] DPLW EL]RQ WDQL NHOOHWW 1HP RNR] NO|Q|VHEE QHKp]VpJHW PHJPXWDWQL KRJ KD D] 5.  UHNXU]tY |VV]HIJJpV NDUDNWHULV]WLNXV SROLQRPMiQDN αL J|NH DNNRU ]L,M = α LM ( M = 0,1, 2 ,., Q ,) VRUR]DWPHJROGiVD 5 QHN+DαLJ|NH 5 QHN 2 k

k −1 k −2  DNNRU α i = a k −1α i + a k − 2 α i +.+ a 2 α i + a1α i + a 0  D]RQRVViJRW YpJLJ V]RUR]KDWMXN α L QQHOpVOiWKDWyKRJD] 5. WHOMHVO 3pOGD$)LERQDFFLVRUR]DWNDUDNWHULV]WLNXVHJHQOHWH 1± 5 0LYHOXQWXQ = F1α 1Q + F2 α Q2 DODNEDQNHUHVVN 2 KHOpUH Q  pV Q W F1 , F2 UH NDSMXN D] DOiEEL [ 2 = [ + 1, J|NHL α 1,2 = tUMXQN EH Q OLQHiULVHJHQOHWUHQGV]HUW F + F = 1 PHOQHNPHJROGiVD F1 = −F2 = $ )LERQDFFL  5 F − F =  VRUR]DWQHOHPpWH]HNV]HULQWtUKDWMXND] n 1 1+ 5 1 1− 5   −   5.  un = 5 2  5 2  n alakban, mely távolról sem tûnik triviálisnak. 0HJHPOtWMN KRJ NO|Q IROyLUDWD YDQ D )LERQDFFLIpOH V]iPRNQDN 5HNXU]tY VRUR]DWRNUD YRQDWNR]yODJ QHP]HWN|]LOHJ LV HOLVPHUW V]pS HUHGPpQHN NDSFVROyGQDN .LVV 3pWHU pV 3HWK{ $WLOODQHYpKH]PLQGNHWWHQD *{U.iOPiQiOWDOOpWUHKR]RWW GHEUHFHQLV]iPHOPpOHWLLVNRODMHOHVV]HPpOLVpJHL

$JHQHUiWRUIJJYpQHOQHYH]pVWW|EEIpOHpUWHOHPEHQ LV KDV]QiOMiN D PDWHPDWLND NO|QE|]{ WHUOHWHLQ 0L LWW NpWIpOH OHKHWVpJHV pUWHOPH]pVW IRJXQN PHJHPOtWHQL (O{V]|U D] ~J QHYH]HWW SDUWtFLyV SUREOpPiNUD YRQDWNR]y JHQHUiWRU IJJYpQHNU{O EHV]pOQN /HJHQHN DGRWWDN D] Q1 , Q2 ,., QN  SR]LWtY HJpV]HN .pUGH]]N KRJ D] P V]iP KiQIpOHNpSSHQ iOOtWKDWy HO{ D] Q1 , Q2 ,., QN N |VV]HJHLNpQW RO PyGRQ KRJ EiUPHO Q1 , Q2 ,., QN  V]iPRW W|EEV]|U LV IHOKDV]QiOKDWXQN pV D VRUUHQG QHP V]iPtW $ SDUWtFLyV SUREOpPiQDN D] HO{EEL YiOWR]DWiW V]RNiV SpQ]YiOWiVL SUREOpPiQDN LV QHYH]QL 9L]VJiOMXN PHJ SpOGiXO KRJ YDODPHO V]iPRW KiQIpOHNpSSHQ OHKHW HO{iOOtWDQL D]  V]iPRN |VV]HJHNpQW 7HNLQWVN D N|YHWNH]{IJJYpQW  ( )( ) f ( x ) = 1 + x 1 + x 2 +.+ x n + ⋅ 1 + x 2 + x 4 ++ x 2 n + ( )( ) *.  ⋅ 1 + x 3 + x 6 ++ x 3n + ⋅ 1 + x 5 + x 10 ++ x 5n + = = (1 − x )(1 − x 1 2 )(1 − x )(1 − x ) 3

5 $] I [  IJJYpQ OHV] H] HVHWEHQ D JHQHUiWRU IJJYpQ 1HP YL]VJiOMXN KRJ D] I [  HO{iOOtWiViEDQ V]HUHSO{ KDWYiQVRURN NRQYHUJHQVHN H YDJ VHP +D D] I [ W KDWYiQVRUEDIHMWMN *.  f ( x ) = 1 (1 − x )(1 − x )(1 − x )(1 − x ) 2 3 5 = A0 + A1 x + A2 x 2 +.+ Am x m + DNNRU D] $P HJWWKDWy IRJMD PHJPXWDWQL KRJ PW KiQIpOHNpSSHQ OHKHW IHOtUQL D]  V]iPRN |VV]HJHLNpQW $]  $P HJWWKDWyN PHJKDWiUR]iViUD NO|QE|]{ PyGV]HUHN OpWH]QHN (J OHKHW D N|YHWNH]{ $ *.  QHYH]{MpEHQ D V]RU]iVRNDWHOYpJH]YHDGyGLN *.  f ( x ) = (1 − x − x 1 2 +x +x −x −x 4 7 9 10 +x 11 ) = A0 + A1 x + A2 x 2 +.+ Am x m +  $ QHYH]{YHO YpJLJ V]RUR]YD V ILJHOHPEH YpYH KRJ [P HJWWKDWyMD  D EDOROGDORQ KD P! D] $P HJWWKDWyNUD D] DOiEELUHNXU]tY|VV]HIJJpVWQHUMN *. $ P = $ P −1 + $ P −2 − $ P −4 − $ P − 7 + $ P −9 + $ P −10 − $ P −11 $ 

$NH]GHWLpUWpNHNUHKDPDNNRU$P pVKDP DNNRU 0iV PyGRQ LV PHJKDWiUR]KDWMXN D *.  IRUPXOD MREE ROGDOiQ iOOy KDWYiQVRU HJWWKDWyLW $ *.  IRUPXOD MREE ROGDOiQYpJH]]NHOD]RV]WiVW *.  f ( x ) = (1 − x − x 1 2 + x 4 + x 7 − x 9 − x 10 + x 11 ( ) ) 1 : 1 − x − x 2 + x 4 + x 7 − x 9 − x 10 + x 11 = 1 + x + 2 x 2 + 3x 3 + 4 x 4 + 6 x 5 +. x + x 2 − x 4 − x 7 + x 9 + x 10 − x 11 2 x 2 + x 3 − x 4 − x 5 − x 7 − x 8 + x 9 + 2 x 10 − x 12 3x 3 + x 4 − x 5 − 2 x 6 − x 7 − x 8 − x 9 + 2 x 10 + 2 x 11 + x 12 − 2 x 13 4 x 4 + 2 x 5 − 2 x 6 − 4 x 7 − x 8 − x 9 − x 10 + 2 x 11 + 4 x 12 + x 13 − 3x 14 6 x 5 + 2 x 6 − 4 x 7 − 5x 8 − x 9 − x 10 − 2 x 11 + 4 x 12 + 5x 13 + x 14 − 4 x 15  $]DOiEELGHILQtFLyEDQHJVRUR]DWKR]PiVPyGRQUHQGHOQN JHQHUiWRUIJJYpQW HILQtFLy $GRWW $ D0 , D1 ,., DQ ,  VRUR]DW 2 m JHQHUiWRUIJJYpQHD] f ( x ) = a 0 + a1 x + a 2 x +.+ a m x

+KDWYiQVRU $] HVHWHN W~OQRPy W|EEVpJpEHQ LWW VHP pUGHNHV KRJ D GHILQtFLyEDQ V]HUHSO{ KDWYiQVRU PLOHQ LQWHUYDOOXPRQ NRQYHUJHQV eUGHPHVPHJYL]VJiOQLDJHQHUiWRUIJJYpQHNVHJtWVpJpYHOD )LERQDFFLVRUR]DWRW/HJHQ *.  G( x ) = u0 + u1 x + u2 x 2 ++ un x n + D)LERQDFFLVRUR]DWJHQHUiWRUIJJYpQHD]HO{]{GHILQtFLy pUWHOPpEHQ V V]RUR]]XN PHJ [[HO PDMG [WHO QHUMN D] DOiEELNpSOHWHNHW *.  xG( x ) = u0 x + u1 x 2 + u2 x 3 ++ un x n +1 + *.  x 2 G( x ) = u0 x 2 + u1 x 3 + u2 x 4 ++ un x n + 2 +  KRJ +DD *. E{OUHQGUHOHYRQMXN *. WpV *. WDGyGLN ( ) *.  1 − x − x 2 G( x ) = u0 + (u1 − u0 ) x + (u2 − u1 − u0 ) x 2 ++ (un − un −1 − un − 2 ) x n + [ A (GK8)-ból PHJNDSKDWy *.  G( x ) = G(x) zárt alakja egyszerû osztással x  1− x − x2 $* [ MREEROGDOiQiOOyUDFLRQiOLVW|UWIJJYpQWERQWVXN SDUFLiOLV W|UWHN |VV]HJpUH D YDOyV WHVW IHOHWW )LJHOHPEH 1 YpYHKRJDQHYH]{EHQV]HUHSO{SROLQRPJ|NHL

−1 ± 5  2 ( *.  G( x ) = ) 1  1 1  x = +   2 1− x − x 5  1 − αx 1 − α x  DKRO α = 1 − α = ( ) 1 1 − 5  $ 2 *.  MREE ROGDOiQ V]HUHSO{ 1 1 , 1 + α [ + α 2[ 2 +. + αQ[ Q +  IJJYpQHN D] 1 − α[ 1 − α[ 1 + α [ + α 2[ 2 +. + α Q[ Q + PpUWDQL VRURNNDO HJH]QHN PHJ )LJHOHPEH YpYH KRJ DEV]RO~W NRQYHUJHQVHN DONDOPDV PyGRQ iWUHQGH]YH PHJNDSMXN KRJ D )LERQDFFLVRUR]DW WDJMDL tUKDWyN  n 1  n  α − α  DODNEDQ|VV]KDQJEDQDNRUiEELHUHGPpQQHO 5.   5 WDO 0HJMHJH]]N KRJ D )LERQDFFLVRUR]DWQDN H]W D] DODNMiW D IHQWL OHYH]HWpVL WHFKQLND KDV]QiODWiYDO / GH 0RLYUH PiU EDQN|]|OWH un =