Tartalmi kivonat
!"# $ %&)(+*-,/.10/24573 6 8:9;9:<>=@?A8B=9;CD= Tartalomjegyzék ?:=E?:=GFIH:JLKEMOPRN Q KAH>N SBTUVXN WZY PRN [ S PW T]M V JH^ `H;a PRWZbcPR[ =)=)=)=)=)=)=)=)=)=)=)=)= ?:=d8B=fe7Khg VjiLVjk1Q KlPN WZV a:m Vjk1WEV J Vj[ SBM Vj[ JnH iLboVXp H ^ [ S1K k J V a i PN W a1Hq inr VjN [ =)=)=)=)= ?:=utD=wv Vx[ JLH iLboVjp H ^ [ K V a:m VXkVXy zN JBVXN ynV =)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= ?:=|<>=wv Vx[ JLH iLboVjp H ^ [cynp K b~}W JPN kc[ K V a:m VXkVXy zN JBVXN ynV =)=)=)=)=)=)=)=)=)=)=)= ?:=dB=fe7K ynp JLK r }N Q KAH N [ SDK k J V a i PN WEy H [:PRy P N a;H [ =)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= ?:=uCD=f i H rVXk K }y JBV N J VXW ==)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= 1. PDE és geometriai interpretációjuk ? 1 s { ?A8 ?X< 8B=E?:= k1PW KEJLK [D}y L} q a;a:MVXN k m Vj[ =)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= 16l? C 8B=d8B=
P}Q m]H PWEV y[ mcJDV N J VXWb PN y H Y>iLVXkY }I^ e74 iLV =)=)=)=)=)= A? s 2. Cauchy-Kowalewsky tétel tD=E?:= ypj[ Hq p Hq [IP~ e7 WZV zN i PN y PN H p =)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= tD=d8B=fK kV PN i K y e7 `H iLb PRN W K y K k J V a i PN WEP J1H N y P N a P =)=)=)=)=)=)=)=)=)=)=)= tD=utD=fe7Khg VjiLVjk1Q KlPN W H:T Vxi P N JLH iUyp K br H N WE}1bcP =)=)=)=)=)=)=)=)=)=)=)=)=)=)= tD=|<>=GHAM PRi KlPN kyYVji KEMOPN W PN y =)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= tD=dB=f V PRi J Pk Pq WZVji J V H iLVjb =)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= tD=uCD= VXN WEYP]W K k1V PRN i K yO[ H kkVx KlHN =)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)=)= 3. Formális integrálhatóság :8 t8 t;t t:< t;C t;{ 22 1. 1.1 ¸¬¹Lº»¹¼ ÆAÑ PDE és geometriai interpretációjuk Motiváció, példák, alpvető fogalmak ¹¾
¿²À]ÁEÂùLÄx¹¼ÅÁ ÆA¾ ÇZÈÆ ¿ ɾ ÊÌÍ Ë º;º1Î ¹¾ ¼;»Ï ¹¾ Ð ½ ¹LÄj¹ÐÐ Í Ë ½ ÆlÑ ¿ ½ À]ÁEÂùLÄx¹¼ÅÁ ÆA¾ ÇZÈÆ ¿ ɾ ÊÌÍ Ë º;º1Î ¹¾ ¼»@¿ÏÒI¹ Ç »>Äx¹ Ó ?AÔ 1 Példa f, g : U (⊂ R2 )−−R α : U−−R ∂α (x, y) = f(x, y), ∂x ∂α (x, y) = g(x, y). ∂y p°PRp£V a:m VXkWZV J iLVjk1YynpjVji PRN W J PW PN rPRkk1Vjb H WEY11P JH N boV a>S boVji J Pp f VXN yÃP g n} q a;a:MVjN k m Vj[ [ Hq p H:qS JnJH; a:mPRbo VXkk N mDK rH VXk =ÖWFIV N J KEVjM p K [GP VXW`PmDY1KP J kVj[ bo V a;H WZY J PN yLP LM S PR[B[ H i a;HqH ynynpjN V L} q S a;a¬VXN y [VXWEW VXkk PRWuÕ k VjWOPoVXkk rVjk§P VjW`PY1P k1PR[ PRkfboV WZY PyLP PplP W V N J VXp K [×Pp α(x, y) Y KEg VjiLVXkQ KXPN WZ1P J1H)N L} q a;a:MVXN k m PRb K iLV J VXWuÕVXy }q WZkVj[×P VXk JnK V a:m VXk WZV J Vj[ S P[B[ H i Ó 8;Ô ∂g
∂f (x, y) = (x, y) V a:m Vjk1WEV J r K p JLH yLPk J VXWuÕVXy }q W S ∂yK ypXVXk#Pp α(x,∂xy) iP J VXWuÕVXy }q WP ∂2 f ∂2 f (x, y) = (x, y) ∂y∂x ∂x∂y V a:K@m J Vjk1WEV Jl=£ p J VXJ P N J K¯S P+boH;a:V m a;H WEY11P JH N y P N a V a:m ynp }q [By V N a VXy VXW JBV N J VXWZV =´ kkVj[cPWZP T Õ PN k [ }1Y;Õ}>[ÕØVjWZVXk VXk PRp K H f = x y k y, g = yQ y x MOPN W`Pynp JPN yÙboVXWEWZV J Pp Ó ?AÔ V a:m Vjk1WEV J kVj[wk K kQXyboV a;H WEY PRN yLP S K ypXVXkGP Ó 8;Ô) VXW JDV N J VXW VjrrVjk Pp×VXynV J J rVXk SkVXb J VXWu ÕVXy JB}q N WJ =ÚFIJ KEJ)J }q Y}1k>[FIb K H J kYPRk J K PÚN boH ^ V a;H WZYN J1P K+J1H N `y H;P Na a i H N W PRrÓrPkÛPpwVjynV rVjk 1PP VXW V VXW VXWuÕVXy }WÝÜ k Pp [ Vjy rrÞW Ó P k ÕØ}>[ P 8;Ô V a:m VXkWZV J kVXboQjyLÓ PR[!ynp }q [By V N a VXy S YV VXWZV a VXkY Hf^ VXW JBV N J V K yÚPp ?AÔ boV a;H WZY 1P J1H N y P N a´PN k1PR[ S
PplPp+P 8;ÔUMOPN W`Pynp JPN yßboVXWZWZV JnJ P VjW`PY1P J boV a;H WZY1P J1H>N = Geometriai interpretáció VXW }1q WEV J V J [VjiLVXy }1q k>[ S PoVXW m V J Pp α a i P N ÕØP)1P J>PN i H p-boV a>S4VXN yUP VXW }q WZV J b K k YMVXk JLTH H H k J Õ PRN rJ>PkN HP VXWN }q WZV J)VjN a>i K=4k JH ^ ÕVOK Pm p (1, 0,q f(x,J J y)) SlM K WZWZV Jnq M VKP (0,J a 1,N g(x, Vx[ i [c1P PRi pXÓ p P[oboV p W Vjk VXW }1WEV V kV VXpjp }>[ k V i PW VXW }q WZy))V J kVj[ =´ iLVXkYynpXVji J VjWuÕVXynVXk Ô°K k J V a i PN WEP J1H>N S PÙb K k1YVXk TH k J iP K WZWZVXypj[VXY K [ V a:mÖK k J V a i PN W VXW }q WZV Jl= 3 v PW H N rPk S PRboVXkk mDK rVXk M Pk K W m VXk M VXW }q WZV JXS P[B[ H i-P π : M R °T i H ÕVj[Q KlH N Ó PRpVXWEy H ^ [ V N J [ H]H iLY K k P N JPRN iLP ÔK k M Vxi JPN WZ1P JH>N S boVji J P π V a:m ynpX}>r1boVjiLp KAH>N S Pp K b T W K Q KhJ JBV N J VXW
VjN i J VjWZb VjN rVXkIPp M Vjk#P z [ H]H iLY K k P N J P+[ KZ VÕVXpXV JH ^ Pp (x, y) k1PW S]J VX P N J Pp H´^ N S K J a:m α : R R L} q a;a:MVXN k mGa i P N ÕØP = p M T PRiLP V N J VjinVXp VXN y V N J M VjW PWZW b k V PY;ÕØPÕßP ϕ : (x, y) (x, y, α(x, y), ) VXN y J V J ynp H ^ WZV a VXy TH k J rPk#Pp M VjN i K k JH:^ J VjinV P VXN yP S PpXPp-PRp (1, 0, ) VXN y°P (0, 1, ) VXN y°P M Vx[ JLH i H [ VXyp zN JLK [[ K¯=4 VX P N J TH JLH H S T M = D k yLPkIPR[B[ i 1P 2 2 ∂ϕ ∂x ∂ϕ ∂y ∂α ∂x ∂α ∂y ∂α ∂α , 0, 1, ∂y ∂y = p 1, 0, p T VjY KEa~TH k JLH yLPkIPR[B[ H i J VXW|ÕØVjy }q W S 1P ∂α = f, ∂x (1, 0, f), (0, 1, g) ∂α = g. ∂y ª ¹nº» Í Ë ½ Ê ¹ Ç Ï ÈÉ º» f, g : R R ¹ Ç ¹LºD¹¿£¿¹Ð ÑÆàâáã ¹Lº»¹¼ Ç ¹¿â¼¹ ½ Æ 0 = (0, 0) ¹Lº» ½ É Ë ¹LÄLº¼» »¹ Ñ É Ë¹ÄL¿ ¼;¹R¾ »ä¹ ¹LÑ ¼Ã¹å
¿ ¹R¤ ä½]¹½ ¼É Ï ÄÙÈ¿É ¹º¿æ» Ð Ñ@Éç Ç ¹LºD¹Ð z ∈ R ¹LÐx¹¿ ¹¾ ¼ Ç ¹¾ ¿¹ Ñ Á ½ ÉÇ » Æ ¼ α ÌÊ Í Ë º;º1Î ¹¾ ¼;» Æ ½ ¾ 0 1 Tétel. 2 0 α(0, 0) = z0 ∂α =f ∂x ∂α =g ∂y è é`êÌë;ìí°ïæî ð ñÌî òRó V a:m Vjk α(0, 0) = z S bcPÕYYVjô1k KlPN WuÕ}>[ Pp VXWEPRynpXk PN W PN y P N M PRW@Pp α(x, 0) n} q a;a:MVjN k mBJ 0 bcPÕYÚY1Vxôk KXPRN WuÕ}[oP α(x, y) := α(x, 0) + α(x, 0) := z0 + Zx ∂α ∂x =f V a:m VXkWZV J f(t, 0)dt 0 Zy g(y, t)dt = z0 + K 1Pynpjk PRN W M P Ó 8;Ôõ¯J Pp J [:P T Õ}>[ S H;a:m Pp 0 y−− Zx f(t, 0)dt + 0 ∂α (x, y) − f(x, y) ∂x Zy g(y, s)ds 0 P p H k H ynPk)K k]JL}K WZW`P =à KEMOp£N } J a:m N JPk 9 K yk mBH N K W MOK PN = k EK a P p´Pp y = 0 boVXk JBVjN k SlJLHAMOPN r1r P°N [ K ynp PN b zN JnM P Pp y ynpXVji k
YVji PW Õ P PY Y [ ® Ñ ¹ ÇAÉç Ñ@Éwç ö ¹ ¾ Ç À Æ ¾ ¿ ɾ Ç ÆA¾ Ç ¿ ÆlÇ Æ ¾ ¼ É Ð Æ ää÷¹Ðx¹¿¹¿§ÎRÁ Ñ Ðº ¹ ¾ ÇZÈÆ ¿ Í ¼ ½ Ï ÈÆ÷ÆAÑ f, g : U (⊂ ¹¿ÚÀ]ÁE¹LÄj¹¼ÅÁ Æl¾ ÇZÈÆ ¿ Éø¾ ÊÌÍ Ë º;º1Î ¹¾ ¼»Ï ¹¾ Ð ½ ¹LÄx¹ÐnÐ Í Ë ½ ÆAÑ ¿ ÆAÑ α : U−−R R )−−R ½¾ ½¹¾ ¿nÎ Æl¾ Ç ¿ ÉÑ É ¾ ÐÀ]ÁEÂùnÄj¹¼ÅÁ ÆA¾ ÇEÈÆ ¿ É)¾ ÊÌÍ Ë º;º1Î ¹¾ ¼»@¿ÏÒI¹ Ç »DÄj¹ ∂α (x, y) = f(x, y, α(x, y)), Ó tÔ ∂x 2 Példa 3 ∂α (x, y) = g(x, y, α(x, y)). ∂y b PN y H YinVXkY } ^ M V a:m VXy T PRiLQ KXPRN W K yUYVji KEMOPN W J P[cV a:m VXkW H ^ y V N a/VxN r H ^ WPY H N Y K [ S H;a:m ∂α2 (x, y) = ∂y∂x || 2 ∂ α (x, y) = ∂x∂y ∂f ∂f ∂α (x, y, α(x, y)) + (x, y, α(x, y)) (x, y) ∂y ∂z ∂y ∂g ∂g ∂α (x, y, α(x, y)) +
(x, y, α(x, y)) (x, y) ∂x ∂z ∂x IF KEM VjW KhJnJ b V N a kVXbQjyLPR[Pp f K WZWZV JnM VP g ynpXVjinV T VXW S VXp~b V N a k1Vjb J}1N W41PypXk H y VjrrVjkcP `H iLb PN rPRk =ÃvK ynp H k J PRp Ó tÔ VjiLVXYV JLK V a:m VXkWZV J Vj[V JU VjWZ1PynpXk PN W M PPY H N Y K [ S H;a:m PoVXkk mBK rVXk M Pk boV a;H WZY PN y S PR[B[ H i-Pp ∂f ∂f (x, y, α(x, y)) + (x, y, α(x, y)) · g(x, y, α(x, y)) ∂y ∂z ∂g ∂g = (x, y, α(x, y)) + (x, y, α(x, y)) · f(x, y, α(x, y)) ∂x ∂z ù PPp U b K kYVXk (x, y) TH k J ÕØPVXynV JBVXN k#W V N J Vjp K [cboV a;H WZY PN y S PR[B[ H i-Pp Ó <ÌÔ V a:H~^ m Vj k1WEJBV NJ J kVjJl[ S@J N VXa:Wum ÕVXy }q H WZk K VßHq[VXM WZW =´J pq } J1H N rr K H ^b H PN i°QXynJPRH ^ [o=´Pp f VXN yO P gJDN LJ } q a;a:MÓVXN tk Ô m Vx[Ba:miLV zN i VXW VjW V VjW z PRp [o[ p V WZVXk }W@VXWZWZVXk i pj1V [ p+P VXW V VXW@P V Vjk WZV J iLúVXkYynpXVji²boV a;H WZY1P J1H N y P N a´PN
k1PR[×yp }>q [Dy V N a VjyV a:m ynp }>q [Dy V N a VXy VXW JDV N J VXW V N J PY;ÕP = Vjk1Vxi K [D}yLPRk MOPRN W`Pynp JnH:JnJ L} q a;a:MVXN k m Vj[BinV°VXp J VjiLb VjN ynpXV J VjynVXkÙkVXb J VjWuÕVXy }q W = VXN Y PN }W Pp f(x, y, z) = xyz, g(x, y, z) = x y z MOPN W`Pynp JPN yboVXWZWZV JJ Pp Ó tÔ V a:m Vjk1WEV J iLVXkYynpXVxiLkVj[Þr K p JLH yLPkk K kQXy M PW`PoVXkk mDK Ó <ÌÔ V a:m VXkWZV J kVXb J VXWuÕVXy }q W =£ÖVjN inY VlN û K H ^ a;H N S K (x, y) iP WZWZVXypj[VXY boV WZY PyLP ynpXVXkÖPp PoVjk1k mDK rVXkIPRp f VXN y g L} q a;a:MVXN k m Vj[V J P ∂f ∂f ∂g ∂g + ·g = + ·f ∂y ∂z ∂x ∂z 4 4 4 f(x, y, z) = ., b H N Y H k UM P N W`PRynp J Õ}>[ S PR[][ H i M Pk V)boV a;H WZY PN y = g(x, y, z) = . ¬¸ ¹Lº»¹¼ ¼» ü ¾ Ç ¿Ï ÆlÈÉÇ U Æ 0 ∈ R ¹Lº»I¼» ü ¾ Ç ¿ ½ É Ë ÄL¼;»¹ Ñ ¹¿¹jÏ à¯ÆAÑ ¹L¼ Æ ½ ÉBÉ ÄxÀBÁE¼ Æ ¾ ¿ Æ ¾
½ Æ ¿ t , x ý ÎR¹ Çþ ¹ ÇRÉË ÇÿþÍ Ë ½ ã Ï ¹¾ Ð Ç ¹nº»¹¼¹ ½ f : U × V R ý ÐnÁEÒ ÆGà ãcÊÍ Ë º;º1Î ¹¾ ¼»¹ ½ ÒoÁE¼À¹¼ i = 1, ., mý Äj¹å ¤ ½]½ É ÄcÒoÁZ¼À¹¼ x ∈ V ý Äj¹ ö£É º;¼º1¿ Î É ¹LÐ ¼Æ »¼ Ï Æ ½B½ ºÉ » Ä Ç ¹¾ ¿¹ Ñ Á ½ ÉÇ » Æ ¼ α : W−−V Æ 0 ∈ R ½ É Ë Än¼»¹ Ñ ¹A¿ ¹R¾ ä¹¼ À¹ 1¼1Á ÆA¾ Ç ¿ ÊÍ Ë ¾ ÈÉ 2 Tétel. U × V ⊂ R n × Rm Rn × R m C∞ ÈÆ (0, x) n i j n i m α(0) = x, ∂α (t) = fi (t, α(t)), ∂ti ý ¼¹ ½ Î Æ ¼ ÉÇ » Æ ¼ ½ É Ë ÄL¼»¹ Ñ ¹¿¹XÏ ÈÉ º» Æ n n ∂fj ∂fi X ∂fj k X ∂fi k − + f − f = 0, ∂ti ∂tj k=1 ∂xk i k=1 ∂xk j i, j = 1., m Ê ¹ Ç ¿ ¹¾ ¿¹ Ç ¿¹ Ç þ ¹Ð Í Ë Ç å èé`êÌë;ìí°ïæî ð ñÌî òRó ûBp }q [By V N a VXyy V N a r K p H k mzN J>PRN yLP MDK W P N a;H
y =££a:mVjN i J VXWEb }1^ y V N a PRY H N Y K [ÚP W V N J VXp VXN yr K p H k mzN JPN y PRN r H N W =¬ W V N J VXp VXN yr K p H k mzN JPN y PN H p J Vj[ K k J y }>q [IP α(0, 0, ., 0) = x ∂α (t, 0, ., 0) = f1 (t, 0, , 0, α(t, 0, 0)) ∂t1 Y KEg VjiLVXkQ KXPRN WZV a:m VXkWZV J iLVXkYynpXVji JXS P K k1Vx[ynV azN J y V N a¬V N M VXWboV a PY;Õ}[ Pp n} q a;a:MVjN k mBJX=° Vx[ K k J y }>q [ÚVXW H ^ ynp Hq i-P α(t, 0, ., 0) β1 (0) = x β10 (t) = f1 (t, 0, ., 0, β1(t)) [H Hq p HNq ky V N a VXyY KEg VjiLK VXkJ Q KXPNM WZV a:m VXkHWZV J =¬V Jl = kH kVj[ÖWZV a:m VXk WZY PynP~P |t| < ε k Vji PWZWZ}b k [B[ i 1 pX} JPN k J Vj[ K k J y }>q [ÖP . α(t1 , 0, ., 0) = β1 (t1 ) β1 : (R, 0) (Rn , x) boV a β2,t1 (0) = α(t1 , 0, ., 0) 0 β2,t (t) = f2 (t1 , t, ., 0, β2,t1 (t)) 1 Y KEg VjiLVXkQ KXPRN WZV a:m VXkWZV J V Jl=Þ kkVj[ WZV a:m VXk β : (R, 0) (R , x) boV a;H WZY PN yLPøP K k J Vji M PWEWZ}b
H k = W V N a [ K QXy K iLV MUPN WZPynp JnM PcP t V J7M PRk H W m PRk ε S H;a:m |t| < ε K J M H ^ Hq K =° V a:m VXk |t| < ε k Vji PWZWZ}b kcb }>[ Y [cP β n 2 2,t1 1 [B[ H i 1 2 2 . α(t1 , t, 0, ., 0) = β2,t1 (t) α(0, ., 0) = β2,0 (0) = β1 (0) = x ∂α (t1 , t, 0, ., 0) = f2 (t1 , t, 0, , β2,t1 (t)) = f2 (t1 , t, 0, , α(t1, t, 0, , 0)) ∂t2 vK pXy a´PN WuÕ}>[oP t ypXVji K k JLKT PRiLQ KXPN W K yOYVji KEMUPN W J P Jl=4 VXp M VjpXVXyny }>q [ÚrVi H;q a p zN J V JnJ t VXyV JBVXN k P Ó ;Ô ∂α (t , t, 0, ., 0) − f (t , t, 0, , α(t , t, 0, , 0)) g(t) := ∂t n} q a;a:MVjN k mBJÖVXN yb } J Pyyn}>[cboV a>S H;a:m g(t) ≡ 0 =£ t = 0 VjN i JBVjN [Vx[IboVXWEWZV JnJ 1 1 1 1 1 1 1 ∂α (t1 , 0, 0, ., 0) − f1 (t1 , 0, , α(t1, 0, 0, , 0)) ∂t1 = β10 (t1 ) − f1 (t, 0, ., 0, β1(t1 )) = 0 g(0) = /HAMOPN r1r P N J V J ynp H ^ WZV a Vjy t iLV g 0 (0) = ∂2 α ∂f1 (t1
, t, 0, ., 0) − (t1 , t, ., α(t1, t, 0, , 0)) ∂t2 ∂t1 ∂t2 n X ∂f1 ∂αi − (t1 , t, ., α(t1, t, 0, , 0)) · (t1 , t, ., 0) ∂xi ∂t2 i=1 ! `H iLb~}W P N J V a:m ynpXVxi }>^ r1rVXk VXW zN i M P Ó Pp α PRi a }1boVjk J }bcP-P (t , t, 0, ., 0) SlK WZWZV JM V P f VXN y-YVji KEMUPN W J ÕØP K k1PR[oPRp+PRi a }1boVjk J }bcPÙP (t , t, 0, ., α(t , t, 0, , 0))Ô 1 1 1 n ∂2 α ∂f1 X ∂f1 ∂αi g (0) = − − · ∂t2 ∂t1 ∂t2 i=1 ∂xi ∂t2 n ∂ ∂α ∂f1 X ∂f1 ∂αi = − − · ∂t1 ∂t2 ∂t2 i=1 ∂xi ∂t2 0 (5) ∂f2 = ∂t1 + n n X ∂f2 ∂αi ∂f1 X ∂f1 ∂αi · − − · ∂x ∂t ∂t ∂x ∂t2 i 1 2 i i=1 i=1 n n X ∂f1 X ∂f2 i ∂f1 ∂αi (5) ∂f2 i = + · g (t) + f1 − − · ∂t1 i=1 ∂xi ∂t2 i=1 ∂xi ∂t2 ∂α ∂t2 = f2 = n n n ∂f2 ∂f1 X ∂f2 i X ∂f1 i X ∂f2 i . = − + · f1 − · f2 + · g (t) = ∂t1 ∂t2 i=1 ∂xi ∂xi ∂xi i=1 i=1 = n X ∂f2
∂xi · gi (t) J VX P N JJ VXWuÕVXy zN JLK P VXk JnK W K k1V PRN i K yY KEg VjiLVXkQ KXPRN WOV a:m VXkWZV J V Jl=f kkVj[fboV a H ZW Y PN ynP MBK ynp H k JlS P[VXpXYV JLKÃ VXW JBV N J VXWZVj[ÚPWZP T Õ PN k S P g(t) ≡ 0 = 2 i=1 g(t) ú V H ob V J i K P KK k J Vji T iLV J>PN Q H N p Rn+m rVXk boV a M P k#PY M P n Y>r M Vj[ JLH iLboVXp H ^ i . 1 Xi = (0., fm), 1, .0}, f|i , , | {z {z i} n m XMV N y~JPJ p J N [K VjN JRiLH ^YVXpjp N }>qT1[ T S H;a:møM Pk V H W m Pk VXW }q WZV JlS P K k1Vx[ J V J ynp H ^ WZV a VXy TH k J Õ PN rPRk V Vxi k ÕØV V VXk PRp D =. {X , , X } M Vx[ JLH iLboVjp H ^ [ PN W J PWZWß[ KZ VXyp zN J V JJ n Y K boVXkp KlH N yy zN [ =o boVjk1k mDK rVXk M Pk K W m Vjk S PR[B[ H i π : M R T i H ÕØVx[Q KAH N Pp VXWEy H ^ m PR[ JLH iiP N T V a:mÚN K kJlSM Vji J>PRNK WZ1P J1H N WZVja [ V NN T VXp VXN y SUVXN y²Pp K k M VjiLpjV)boV a 1P J>PRN i H pV a:m
α : R R WZVj[ V VXp VXy P kVXbP i P ÕØP~Pp M 1 n n n m Rn −−− M ⊂ Rn+m [B[ H i)b K k YVXk (t , ., t ) T PRiPRb V N J jV iLkVj[ boV ;a XV WZVXW H ^ H {V , ., V }, P W (t1 , ., tn) 1 1 (t1 , ., tn, α1 , , αm) n p∈M TH k J rPk n . Vi = ∂αm ∂α1 , ., 0., 1, 0, ∂ti ∂ti i p T VjY KEa~TH k JLH yLPkIPR[B[ H i[ H:q M V J [VXp K [ÚrV S 1P ∂α = fi , ∂ti . i = 1, ., n Tp M = ù P§V a:m y H [:PRy P N a Ó VXW }q WZV JÔ b K kYVXk V a:m VXy TH k J Õ PN H p# H pXp PN iLVXkYVXW }q k>[!V a:mS P TH k J r H N WB[ KEK kY1}W HN M Vx[ JLH i JXS P[B[ H i°Pp J b H kYÕ}>[ S H;a:m boV a PY J }k[P7y H [:Py P N a;H k Ó VjW }q WZV J VXk Ô V a:mcM Vj[ JLH iLboVXp H:^ J 1.2 Differenciálegyenletek, vektormezők, integrálgörbék V a:m VXk X ∈ X(M) V a:mfM Vx[ JLH iLboVjp H"^ VXN y γ : (−ε, ε) M V a:mfa1Hq inrVÚPp M y H [Py P N a;H k Ó VXW
}q WZV J VXk Ôx=O γæJ Pp X K k J V a i PN W a1Hq inr VØN Õ VjN k1Vx[ÖkV M VjpXp }>q [ S 1P~b K kY1Vjk JBN S PpXPpÙP γ b K kYVXk T k J Õ PRN rPk PRp VjN i K k JH:^ M Vj[ JLH iP t ∈ (−ε, ε) VXynV Vjk γ(t) = X boV a V a:m VXp K [ÚPp X PY H:JnJßTH k J rPk VXW M V JnJÖVxN i JBVjN [ V N M VXW¯ γ(t) @ H [ PN W K y-[ HBH inY K k P N J PRiLVXkYynpXVxi J 1PynpXk PN W M Po1P X = X S P[B[ H i)P a1Hq inrV TH k JLH yLPkIPR[B[ H i²WZVXypÙPp X K k J V a i PN W a1Hq inr VN ÕV S 1P i ∂ ∂xi γ(t) = xi (t) xi = Xi (x(t)), P pXPp°1KlPN P γa:m [ H b TJ H kVXky L} q a;a:M=¬VXN k m V K boV a;H WZT Y PN N yLP K V a:KEm g VXWEy H ^ iLVXKlkN Y }+^ a:m [ Hq p Hq k1J y V N a VXy¬Y NKZ E JDN H ^ VjinVXkQ PWZV VXkWZV iLVjk1YynpjVjiLkVj[ kkVj[PW`P Õ PkPUY VjinVXkQ PWZV VXkWZV Vj[VXWZb VXWZV Vjr W K yboVji J PpVx K ynp J VXkQ K P VXN y²}k K Q KEJPN yßPboV a; VXWEVXW H ^ [VXpXYV JLK7VjN i
JBVxN [Vj[IboVjWZWZV JnJX= p X M Vx[ JLH iLboVjp H ^ Hq p J Pi JLH p H÷N `H W m Pok1PR[ÛkV M VXpXp }q [ P ϕ : (−ε, ε) × NT N S m B(x , a) − M WEVj[ V VXp VXy boVXW iLV X 0 d dt ϕX (t, x) = X(t0 , x). XV W Hq W VXN a:ymrVXk)P TϕH JL(t,H:J x)H;q a = N ϕJ;q (x)S `H iLb~H }W P N JK yPWE[PTWZbcH PJLpXH pj}[ = pXVx[)K ypXJ Vji a K k J N Pa1boHq VXkN k mBKh rVjk×V x k i p z }k[ PR[B[ i°P ϕ (x ) k ynPk×Pp-Pp k V i PW inr VÕV Pp Xa: km Vj[ S P K P t = Lq 0a;a:T MPRN iPmBb J V N J VjiLk VXN WPp x õH ko1PK WZPJ Y [VjinKEMOVXynN p J:}q K¯SW =£ pXH Vj[PW` `P H T m Õ PN k S 1P)V f : M R } VXk PR[PRiL}k>[Pp X ynpjVji k YVji PWZk PR[][ ißP W P ynV a:mBJ y V N a¬V N M VXW¯ K f(ϕ (q)) − f(q) (Xf)(q) = X f = W b h X t=t0 X t 0 t 0 0 h q h0 1.3 Vektormező kiegyenesı́tése ¸¬¹Lº»¹¼ L¹ º» ÐÁZÒ Æ ÎR¹ ½ ¿ É ÄLÒI¹ Ñ@É ç ÏÒI¹ Ç »>Äj¹ X(p) 6= 0 å
¤ ½B½ É Ä Æ p ½ É Ë ÄL¼;»¹ ý Ñ ¹A¿ ¹R¾ ä¹¼ Î Æ ¼ ÉÇ » Æ ¼ (U, x) ½ ÉBÉ ÄjÀ]ÁZ¼ Æ ¾ ¿ Æ Äj¹¼À]Ð Ñ ¹LÄjÏ ÈÉ º» X = å 3 Tétel. X∈M ∂ ∂x1 èéZê]ë;ìíïæî ð ñÌî òRó [VXpXYV JLK (t , ., t ) [ H]H iLY K k P N J PRiLVjk1YynpjVji×WZV a:m VXk H W m Pk S H;a:m H KEa£H>N S X k1Vx[ T VjY KEa P VXWZVjWÃboV a>=´ Vj[ K k J y }>q [ÖP p kVj[ÖPp i 1 p n ∂ ∂t1 0 χ(a1 , ., an) = ϕa1 (0, a2, , an) WZVx[ V N T Vjp VXN y J P [ Hq iLk m VXpXV JBVxN rVXk =O [B[ H i 0 ∈ Rn ∂ ∂ χ∗ f= (f ◦ χ) ∂t1 a ∂t1 a 1 (f(χ(a1 + h, a2 , ., an)) − f(χ(a1 , , an))) = h0 h 1 = (f(ϕa1 +h (0, a2, ., an)) − f(χ(a1 , , an))) h0 h 1 = (f(ϕh ϕa1 (0, a2, ., an)) − f(χ(a1 , , an))) h0 h 1 = (f(ϕh χ(a1 , a2 , ., an)) − f(χ(a1 , , an))) h0 h = (Xf)χ(a) . WKb WKb WKb WKb û T VjQ KlPN W K yLPkÖP 0 rPkIVXpjVj[ ynpjVji K k J χ∗ ∂ ∂ti 0 χ∗
∂ ∂t1 0 = ∂ ∂t1 . 0 ùP i>1 S P[B[ H i ∂ (f ◦ χ) ∂t1 0 i 1 f(χ(0, . h, , 0)) − f(χ(0, , 0)) = h0 h i 1 = f(0, . h, , 0) − f(0, , 0) h0 h ∂f = i . ∂x 0 f= WKb WKb 1.4 Vektormezők szimultán kiegyenesı́tése ÆÄ Ò ¹ ¿¹LÄj¹LÐ)¿ Ä ¼Ð ÄL¹nÒ º»ÅÁ À]ÁEÅÂÃÐ ¹ É Ò ÄAÉ ¿ Ä Ñ Ò Í Ð Ï ¹¾ Ð X Ä ∈ X(M) Æ ÒoÁZ¹¼¹ ½ ÆAÑ n¹ º» /ö Æ ý Æ ¾ Æ ÑXÊæÉ Æ ¾ É ¾ Éxö´É þ ÆÆ ϕ Æ ½]½ É ÆlÑ X := α Xý ¾ Æ 4 Lemma α : M M t ∗ = α ◦ ϕ ◦ α−1 ϕ t èéZê]ë;ìíïæî ð ñÌî òRó (α∗ X)q f = (α∗ Xα−1 q )f = Xα−1 q (f ◦ α) 1 = f ◦ α(ϕh (α−1 )) − (f ◦ α(α−1 (q))) h0 h 1 = f ◦ α(ϕh (α−1 )) − f(q) h0 h 1 = f(α ◦ ϕh ◦ α−1 (q)) − f(q) h0 h 1 (q)) − f(q) = f(ϕ h h0 h WKb WKb WKb WKb ¹Lº»À]ÁEÂù É Ò É Ä Ñ Ò Í Ð ¹¾ Ð α X = X(M)Ï Æ
½B½ É Ä α ◦ ϕ = ϕ ◦ α å 1 Definı́ció ® Ñ Y ∈ X(M) ÎR¹ ½ ¿ É ÄLÒI¹ ÑÉ ç X ∈ X(M) Ð Ñ ¹LÄLÁZ¼¿æÁ¸@Áâ¹ ý À¹LÄLÁõÎ ÆA¾ Ç ¿ þ Æ ¾ ¼ Æ ½ ¼¹ÎR¹ ÑXÑ´Í Ë ½ ÆAÑ . K (L Y)p = W b Y − (ϕ Y) ÎR¹ ½ ¿ É ÄLÒI¹ ÑÉ ç ¿nå ¤ Ñ ¹ ½ ÎÁõÎ ÆlÇ ¹¼Ð Æ (L Y) := [X, Y] À¹ 1¼ ü ¾ ÅÁ É ¾ Î ÆAÇ Ï ÆlÈÉÇ ÁZÐ Æ 5 Következmény α:MM ∗ X h0 p X h∗ p X p p . [X, Y]f = X(Yf) − Y(Xf). ¬¸ ¹Lº»¹¼ ÆAÑ X ∈ X(M) ÊæÉÇ » Æ Ò Æ)Æ ϕ ¹¾ Ð ÆlÑ)ÆAÑ Y ∈ X(M) ÊæÉÇ » Æ Ò Æ)Æ ψ å ¤ ½]½ É Ä ö£É ¼¿ É Ð Æ ¼ ÒoÁEÆ ¼½]À½ ¹É ¼ Ä [X,¹Ð Y] Äj=¹å 0Ï ÈÆ ÆÚÊæÉÇ » Æ Ò É ½½ É ÒoÒ Í ¿ ÆA¾ Ç ¼ Æ ½ Ï ÆlÑRÆAÑ ϕ ◦ ψ = ψ ◦ϕ s ¾ tý èéZê]ë;ìíïæî ð ñÌî òRó P Ô ù P ϕ ◦ ψ = ψ ◦ ϕ S PR[B[ H i (ϕ ) Y = Y SUVXN y zN a:m [X,
Y] = L Y = 0 = r ÔÖ V a:m/}>q [ VXW S H;a:m [X, Y] ≡ 0 = [][ H ib K kYVXk q iP K (L Y)q = W b Y − (ϕ Y) = 0. 6 Lemma t s t s t t s s t ∗ t X h0 q X X h∗ q s Vj[ K k J y }>q [ Tp M WKb K =W b K =W b rVXk#P . c(t) = (ϕt )∗ Yp a1Hq inr V N Jl= 1 (c(h + t) − c(t)) h0 h 1 ((ϕt+h )∗ Y)p − ((ϕt )∗ Y)p h0 h . −t p q=ϕ 1 (ϕt )∗ (ϕh∗ Y)ϕ−1 − (ϕ ) Y −1 = t ∗ ϕt p t p h0 h 1 = (ϕt )∗ (LX Y)q = 0 = (ϕt )∗ (ϕh∗ Y)q − Yq h0 h c 0 (t) = WKb Vjk1kVj[PW`P T Õ PN k c(t) = c(0) S PpXPpI[ H ky J Pky S×VXN y [ H bob~} JPN WPp Y `H W m P P N M PW = (ϕt )∗ Y = Y S×VXN y×P ϕt ¸¬¹Lº»¹¼ ÐnÁZÒ Æ Ï ö´É ¼¿ É ¼ ½¹L¾ ¼¿ Ç ÁZ¼¹ Æ ¾ ÄLÁZÐ Æ ¼ ÊÍ Ë º;ºD¹¿ Ç ¹¼ ÎR¹ ½ ¿ É ÄLÒI¹ Ñ@É ç Æ ½ É Ë ÄL¼;»¹ÄjÑÀ]¹ÁZ¼ ¿ ¹¾ ä¿ ¹¼Äj¹Ï¼ÒIÀ]Ð ¹ Ç »¹LÄ ¹ ½ Äj¹ÁEº
Æl¼Ñ Ï ¿ ÈÉ ºÄ » Ï º» å ¤ Ï ½]½ É Ä Ç ¹¾ ¿¹ Ñ Á ½ ÉÇ » Æ ¼ ½ ÉBÉ Æ ¾ Æ Ñ Æ ö´É ½ É Ë Í Ë Ç ÈÉ èéZê]ë;ìíïæî ð ñÌî òRó [VXpXYV JLK (t , ., t ) [ H]H iLY K k P N J PRiLVjk1YynpjVji×WZV a:m VXk H W m Pk S H;a:m H KEa£H>N S X (p) kVj[ T VXY KZa P VXWZVXWboV a>=£ Vj[ K k J y }>q [ÚP p kVj[ÖPp i 7 Tétel. (Vektormezők szimultán kiegyenesı́tése) X1 , ., Xk ∈ M p [Xi , Xj ] = 0 (U, x) p Xi = ∂x∂ i i = 1.k 1 n ∂ ∂ti 0 i χ(a1 , ., an) = ϕ1a1 ϕkak (0, , 0, ak+1, , an) ZW Vx[ V N T Vjp VXN y J P 0 ∈ R [ Hq iLk m VXpjV JBVjN rVjk =£F V a ÕV a:m VXpXp }q [ S H;a:m P M Vj[ JnH iLboVXp H ^ [ @K V p PN i H N ÕVXWZV£Pp H k H yLPk)kB}WZW`P SVjN y zN a:m P `H W m P H [²[ H bob } J>PRN WZk1PR[ =FIK kYVXk 1 ≤ i ≤ k iP n χ∗ ∂ ∂ti a ∂ (f ◦ χ) ∂ti a 1 = (f(χ(a1 , ., ai + h, , an)) − f(χ(a1 , , an)))
h0 h 1 = f(ϕ1a1 .ϕiai +h ϕkak (0, , 0, ak+1, an)) − f(χ(a1 , , an)) h0 h 1 = f(ϕ1a1 .ϕih ϕiai ϕkak (0, , 0, ak+1, an)) − f(χ(a1 , , an)) h0 h 1 = f(ϕih ϕ1a1 .ϕiai ϕkak (0, , 0, ak+1, an)) − f(χ(a1 , , an)) h0 h 1 f(ϕih χ(a1 , ., an)) − f(χ(a1 , , an)) = h0 h = (Xi f)χ(a) . f= WKb WKb WKb WKb WKb û T VjQ KlPN W K yLPkÖP 0 rPkIVXpjVj[ ynpjVji K k J χ∗ ∂ ∂ti 0 χ∗ ∂ ∂ti 0 = ∂ ∂t1 0 . ùP i>1 S PR[][ H i ∂ (f ◦ χ) ∂t1 0 i 1 f(χ(0, . h, , 0)) − f(χ(0, , 0)) = h0 h i ∂f 1 = f(0, . h, , 0) − f(0, , 0) = i h0 h ∂x 0 f= WKb WKb pXVj[ynpXVji K k J χ Pp 9R rPk K k M Vxi JPN WZ1P JH>N S1zN a:m P χ K k M Vji J>PN WZ1P J1H N P 0 ∈ R V a:m [ K y [ Hq iLk m VXpjV JBVjN rVjk = χ K k M VjiLpXV)P[ zN MOPN k J [ HBH iLY K k P N J PRiLVXkYynpXVji J PRYÕØP = ∗ n 1.5 Disztibúciók, integrálsokaságok å ® Ñ Ð É ½ Æ Ð Æ ¾ º É ¼
ÒI¹Lº Æ À É ¿n¿ ký À]ÁZÒI¹¼ Ñ Á É ¾ Ð#À]ÁZÐ Ñ ¿æÁä Í ¾ ÅÁ É ¾ ¼ Æ ½ ¼¹ÎR¹ ÑXÑ4Í Ë ½ Æ Äx¹¼À1¹ Ç ¹¾ Ðl¿Ï ÈÆ ÒoÁZ¼À1¹L¼ p ∈ M ¹Ðx¹¿ ¹¾ ¼ ∆ ⊂ T M ¹nº» È É X Ñ Ñ Æ ¾ ý À]ÁZÒI¹¼ Ñ Á É ¾ Ð ÆAÇ ¿ ¹L¾ ÄAå á å ®¹LÐxÑ ¹¿ Ò ¹¼ É ¼À þ Í ½ Ï ÈÉ º» ÆlÑ å X ÎR¹ ½ ¿ É ÄLÒI¹ ÑÉ+ç Æ ∆ý Æ ¾ ä Æ ¼#Î Æ ¼Ï ÈÆ ä Æ ¾ ÄLÒI¹ Ç » p ∈ M ¾ Æ X(p) ∈ ∆ å ® Ñ Ò É ¼À þ Í ½ Ï ÈÉ º» ÆAÑ X , ., X ÎR¹ ½ ¿ É ÄnÒI¹ Ñ@É ç ½ ÆlÑ U ⊂ M ¼;» ü ¾ Ç ¿ ÈÆAÇ Ò ÆlÑRÉ ¼ ºD¹L¼¹nÄ ÆA¾ Ç þ Æ ¾ ½ Æ ∆ý ¿Ï ÈÆ ä Æ ¾ ÄnÒI¹ Ç » p ∈ U ¹Ðx¹A¿ ¹¾ ¼ Æ X (p)ÏåEåhå Ï X (p) ºD¹L¼¹nÄ ÆA¾ Ç þ ÆÆ ∆ ý ¿å å ® ∆ ¹Lº» ÐnÁEÒ Æwà C É Ð Ñ ¿ ÆA¾ Ç » Í ¾ ã À]ÁZÐ Ñ ¿ ÄLÁä Í ¾ ÅÁ É ¾ Ï
ÈÆ ä Æ ¾ ÄLÒI¹ Ç » ö£É ¼¿ ½ É Ë ÄL¼»¹ ý Ñ ¹¿ ¹R¾ ä¹L¼IºD¹¼¹LÄ ÆA¾ ÇEÈÆ ¿ É ¾ ÐÁZÒ Æoà C É Ð Ñ ¿ ÆA¾ Ç » Í ¾ ã ÎR¹ ½ ¿ É ÄLÒI¹ Ñ@É ç ½B½ ¹ Ç å å ® ∆ ký À]ÁZÒI¹L¼ Ñ Á É ¾ ÐÙÀBÁEÐ Ñ ¿æÁä Í ¾ ÅÁ É ¾ ÁZ¼¿¹Lº;Ä ÆA¾ ÇEÈÆ ¿ É ¾ Ï ÈÆ ÒoÁZ¼À¹¼ p ∈ M ¹Ð ¹¿ ¹¾ ¼ Î Æ ¼ ÆAÑ Mý ¼¹ ½ ÉÇ » Æ ¼ pý Äj¹Á ÇZÇ ¹Ð Ñ ½ ¹XÀ É ç ký À]ÁZÒI¹¼ Ñ Á É ¾ Ð N =. N Ä ¹¾ Ð Ñ Ð É ½ Æ Ð Æ ¾ º Æ Ï ÈÉ º»IÒoÁZ¼À¹¼ q ∈ N ¹LÐx¹¿ ¹¾ ¼ Ó CÔ T N=∆ . ® ÒI¹¼¼»Áõä¹¼ ÆAÑ ÁE¼ ½ Ç Í ¾ Ñ Á É ¾ ¿ i : N Mý ÒI¹ ÇBþ ¹ ÇRÉË ÇÿþÍ Ë ½ Ï Æ ½B½ É Ä à jã´þ ¹ Ç ¹¼¿ ¹¾ Ðx¹ 2 Definı́ció M p ∆p k p p p 1 k 1 k p k k p q q Y K boVXkp KAH N y£Y K ynp JLK r }N Q KAHN
K k J V a i PN WEP J1H>N S 1P)b K kYVXk p ∈ M VKXyV JBVXN k M KAH>PN kS HH;Wa:m m P k Y K boVjSOk1N p KAH N y K N y H [:Py P N a P VXN y JDH N W m Pk f : N M K k;ÕØVx[ JAzN M boboVxiLp b f VXyb kYVXk q ∈ N VXynV VXk Megjegyzés. i∗ (Tp N) = ∆q . ∆k k p∈ f∗,q (Tq N) = ∆f(q) . [B[ H i7} a:m Pk K y7Pp f [ V N T VPp M k1Vx[ k Y K boVXkp KAH N yi VXN ynpjy H [:PRy P N a PoWZVXynp S P K iLV+P VXW JBV N J VXWZV KJ VXW|ÕØVjy }q WZkVj[ = VXN WZY1P ?:=- V a:m VXk f, g : R R [ V N J y K bcP n} q a;a:MVXN k mS²VjN y J Vj[ K k J y }>q [ P R rPRkP K J K N KlH:N JlS P H W ∆ Y ynp i r }Q 2 . ∆(x,y,z) = 3 1, 0, f(x, y)), (0, 1, g(x, y) pÙPY K ynp JLK r }N Q KAHN TH k JLH ynPk PR[][ H i K k J V a i PN WZ1P J1H>N S P~P ∂f ∂g = ∂y ∂x K k J V a i PN WZ1P J1H N y P N a;K VXW JBV N J VXW J VXWuÕVXy }1q W = VXN WZY1P B8 =- V a:m VXk f, g : R R [ V N J y K
cb P n } q a;a:MVXN k mS²VjN y J Vj[ K k J y }>q [ P R rPRkP K J K N KlH:N JlS P H W ∆ Y ynp i r }Q 3 . ∆(x,y,z) = 3 1, 0, f(x, y, z)), (0, 1, g(x, y, z) pÙPY K ynp JLK r }N Q KAHN TH k JLH ynPk PR[][ H i K k J V a i PN WZ1P J1H>N S P~P ∂f ∂f ∂g ∂g + g= + f ∂y ∂z ∂x ∂z K k J V a i PN WZ1P J1H N y P N a;K VXW JBV N J VXW J VXWuÕVXy }1q W = ¸¬¹Lº»¹¼ ¹Lº» ÐnÁZÒ ÆoÇ ¹ ½¹ ¾ ö ¹ Ñ ¹¾ ÐxÏ ¹¾ Ð Ç ¹Lº»¹¼ X ∈ X(M)Ï Y ∈ N ½¹¾ ¿ ÎR¹ ½ ¿ É ÄLÒI¹ ÑÉ ç å ® Ñ ¿Ò É ¼À þ Í ½ Ï ÈÉ º» ÆAÑ X ¹¾ Ð Y ¹nº»Ò Æ ¾ Ðn¼ Æ ½ f ÒI¹Lº Ê ¹ ÇlÉ ç Á à|þ ¹ ÇRÉË Ç ¹¾ ÐAä>¹¼ Ï ÒoÁE¼À¹¼ p ∈ N ¹Ðx¹A¿ ¹¾ ¼ X ∼ Y ã ÈÆ 3 Definı́ció f :N M f f∗p Xp = Yf(p) . ® Ñ ö£É ¼¿ É Ð Æ ¼ Æ ½B½ É Ä fý ÒI¹nº Ê ¹ Ç ¹ ÇAÉnç þ ¹ ÆlÑ Y ý ¼ Æ ½ Ï ÈÆ Ò Í
¼À¹¼ 8 Állı́tás X V a:m/}>q [ VjWÃ} a:m Pk K y S H;a:m (Yg) ◦ f = X(g ◦ f). X ∼f Y =° [B[ H i-b K kY1Vjk ¹Ð ¹¿ ¹¾ ¼ Ó s;Ô JBN (M) VXynV Vjk g ∈ C∞ (M) g ∈ C∞ . (Yg)f(p) = Yf(p) g = (f∗p Xp )g = Xp (g ◦ f) = X(g ◦ f)p . F V a; `H inY zN JnM P S 1P Ó s;Ô°KZa Pp S Pp TH k JnH yLPkÚPp J ÕVXWZVjk JlS H;a:m M Vj[ JLH iLboVXp H ^ [ f inVXW PN Q KlH N rPRk M Pkk1PR[ = ¬¸ ¹Lº»¹¼ ÈÉ º»IÒoÁZ¼À¹¼ ¹Lº»ÐnÁZÒ Æ ÁEÒoÒI¹LÄ Ñ Á É ¾ Ï ¹¾ Ð Ç ¹Lº»¹¼ ¹Ð ¹¿ ¹¾ ¼ 9 Állı́tás f:NM p∈M f∗p Xp = Yf(p) Y ∈ X(M) S PplPRp)P ÏÌÒI¹ Ç »DÄj¹¿¹ Çÿþ ¹LÐ Í Ë Ç Ï Yf(p) ∈ f∗p (Tp N). ¤ ½B½ É Ä¹Lº» ¹L¾ Äl¿¹ Ç Ò Í ç ¹¼Î Æ ¼ ÉÇ » Æ ¼ X ∈ X(M)Ï ÈÉ º» X ∼ Y å mBK W MOPRN k#Pp X VjN i JBVxN [V K V a:mVjN i J VXWEb }1^ Vjk#boV a 1P JPRN i H p H:JnJ PR[ =U p J
[VXWEW/QXyLP[IrV W HP N J kBN }K k>[ S N H;N a:m N PRp MzHN a:m J YVjH ô1k HN KlPN JBW NJ J X V a:mJ y K bcH P M Vj[ JnK¯H S iLboH;VXa:p m H ^ WZVXyK p =) p K boboVjiL p KlH N [ W [ PW y+WZV z i PRy PRiP k1P [ p V VXWßPp b kYÕØPI[ b kYVXk p ∈ N k1Vx[ M Pk H W m PRk (U, x) VXN yPp f(p) ∈ M kVj[ M Pk H W m PRk (V, y) [ HBH inY K k P N J PR[ Hq ink m VXpXV J V S H;a:m f y ◦ f ◦ x−1 : (a1 , ., an) = (a1 , , an, 0, , 0) p J P[ ]H H Li Y K k P N J PRiLVjk1YynpjVji J 1PynpXk PN W M P ùP Y = Y i ∂y∂ i f∗ S PR[][ H i X = Xi ∂x∂ i ∂ ∂x i S P H W p FIKEM VjWÃPRp Y n} q a;a:MVjN k m Vj[Öy K b PRN [ SzN a:m Pp = ∂ ∂y i . f(p) K yßy K bcP = Xi (a1 , ., an) = Y i (a1 , , an, 0, , 0) i Xi = Y i ◦ f ¹¾ Ð X ∼ Y Ï Æ ½B½ É Ä [X , X ] ∼ [Y , Y ] å Æ è éZê]ë;ìíïæî ð ñÌî òRó V a:m VXk g ∈ C (M) S PR[B[ H i 10 Állı́tás X 1 ∼f Y1 2 f 2
1 2 f 1 2 ∞ kk1Vx[IPRW`P T Õ PRN k (Yi g) ◦ f = Xi (g ◦ f). ([Y1 , Y2 ]g) ◦ f = Y1 (Y2 g) − Y2 (Y1 g) ◦f =X1 (Y2 g) ◦ f −X2 (Y1 g) ◦ f =X1 (X2 (g ◦ f) −X2 (X1 g ◦ f) = [X1 , X2 ](g ◦ f), P K PRp PN WEW zN JPN y JUKZa Pp H W|ÕPP {GPRN WZW zN J>PRN yUPW`P T Õ PN k TH k JLH ynPk Pp J ÕVXWZVXk JLK¯S H;a:m = [X , X ] ∼ [Y , Y ] 1 2 1.6 ® f 1 2 Frobenius tétel À]ÁZÐ Ñ ¿âÄLÁä Í ¾ ÅÁ É ¾ ¿-ÁE¼¿¹Lº;Ä ÆA¾ ÇZÈÆ ¿ É ¾ ¼ Æ ½ ¼ ¹ÎR¹ 4Ñ Í Ë ¼ ½ Ï ÈÆ ÒoÁZ¼À¹¼ å 4 Definı́ció ∆ [X, Y] ∈ ∆ X, Y ∈ ∆ ¹Ð ¹¿ ¹¾ ¼ ¬¸ ¹Lº»¹¼ ÆlÑ U ⊂ M ¼;» ü ¾ Ç ¿ ÈÆlÇ Ò ÆAÑRÉ ¼ Æ ∆ ÆAÑ X , ., X ÎR¹ ½ ¿ É ÄLÒI¹ Ñ@É ç ½ ÆA¾ Ç ¿ ÆAÇ ºD¹¼¹LÄ ÆA¾ Ç Î Æ å ¤ ½]½ É Ä Æ ∆ ö£É ¼¿ É Ð Æ ¼ Æ ½]½ É ÄÁE¼¿¹Lº;Ä ÆA¾ ÇZÈÆ ¿ É ¾ Ï ÈÆ Î Æ ¼¼ Æ ½
ÉÇ » Æ ¼ C ÊÍ Ë º;º1Î ¹L¾ ¼»¹ ½ Ï ÈÉ º» [X , X ] = C X . èé`êÌë;ìí°ïæî ð ñÌî òRó VjW JBV N J VjWk mDK W MUPN k ynp }q [By V N a VXy = p VXWZV a VXkY H ^ y V N a VXp WZV a:m VXk = boVXkk mBK rVXk X, Y ∈ ∆ S PR[][ H i X = f X VXN y Y = g X =- K V X, Y ∈ X(M) p PN i H N ÕVXW }>q [V J boV a:MDK pjy a´PN W M PPp)PY H N Y K [ S H;a:m 11 Állı́tás 1 k l ij i j l ij l α α β β [X, Y] = [fα Xα , gβ Yβ ] = fα (Xα gβ )Yβ − gβ (Yβ fα )Xα + fα gβ [Xα , Yβ ] = JBP bN K Pp J b~} J P J ÕØP S H;=a:m Pp×VxiLVXYb VXN k m rVXkkV M PRk Pp VxinrVXk#PRplPp)P ∆ rPk = fα (Xα gβ )Yβ − gβ (Yβ fα )Xα + fα gβ Clα,β Xl X1 , ., Xk P N W J PW a Vjk1Vxi PN W J ¸¬¹Lº»¹¼ ¹Lº» ¹Ð ¹¿ ¹¾ ¼ Ç ¹A¾ ¿¹ Ñ Á ½ ý » À]ÁZ¼ÒI¹¼ Ñ Á É ¾ ÐUÁE¼¿¹Lº;ÁZÄ Ð ÆA¾ ÇZÈÆ ¿ ÄjÉ À]¾ ÁZÀ]¼ ÁZÐ Ñ ¿
¿âÄLÄjÁ¹ä ¼Í À]¾ ÅÐ Á É ¾ ¹Lå ÄxϤ ½B½ ºÉ » Ä-ÒoÁZ¼À1¹L¼ ÉÇ Æ ÇâÉ ½ÙÆA¾ Ç ½ ÉBÉ Æ ¾ Æ Ñ ÈÉ 12 Tétel. (Frobenius tétel) ∆ k (x, U) x∈M x(p) = 0 x(U) = (−ε, ε) × . × (−ε, ε), ¹¾ вÒoÁZ¼À¹¼ÚÄ É Ë º Ñ ü ¾ ¿¹¿¿ a åhåEå a L¹ ¾ ÄA¿ ¹ ¾ ½ ¹ ½ Äj¹XÏ ÆAÈÉÇ |a | < εÏ i = k + 1.nÏ ÆAÑ k+1 n i . Nak+1.an = q ∈ M | xk+1 (q) = ak+1 , , xn(q) = an ý ä¹ Ç Á@Ä ¹¾ Ð Ñ Ð É ½ Æ Ð Æ ¾ ºI¹Lº» ÁZ¼¿¹nº;Ä ÆA¾ Ç Ð É ½ Æ Ð Æ ¾ º Æ~Æ ∆ À]ÁZÐ Ñ ¿âÄnÁä Í ¾ ÅLÁ É ¾ ¼ Æ ½ å èé`êÌë;ìí°ïæî ð ñÌî òRó V a:m/}>q [ VXW S H;a:m V a:m [ HBH iLY K k P N J PRiLVXkYynpXVji J PWE[PWZbcPp M PVjW VjN i J:}>q [ S H;a:m x(p) = 0 SOVXN y M ∂ ∂ , ., k 1 ∂x 0 ∂x ∆0 = pIV a:mfJ V J ynp H ^ WZV a Vjy [ HBH inY K k P N J PRiLVXkYynpXVxinr H ^ Wß[ KZK
kY}W M P S bcPÕYfV a:m VjW JLH W PN y J VjN y `H i a P JPN y J PWE[PWZbcPRp M PÖVXW VjN iLV JRH>^ = pXVx[ } JPN k J Vj[ K k J y }q [fP π : R R T i H ÕVj[Q KlH:N J PpÖVXWZy H ^ k [ H]H iLY K k P N JPRN iLP = FIKEM VXW π : ∆ πR K p H b H pjô1pXb~}y S²zN a:m P 0 V a:m [ Hq iLk m VjpXV JBKVjN rH VXk H K y K W m VXk=-WZVX ynp S N PRJ plPp K PpV~[ K Hq m iLk m VXpjV J rVXkøa:mW V NN MÃJ H ^ q T^ H k JLH N []J rPRK k P p b pjô1pXb~}1y p Vji b k1YVXk W VXk q iP×V Vji VXWZb }VXk#W V VXp [ H W mπPRk : ∆ πR X (q), ., X (q) ∈ ∆ H;a:m 0 n ∗ ∗ 0 k 0 k 1 π∗ [B[ H iPp k Xi ∈ X(Rn ) k ∂ ∂xi q = ∂ ∂ti M Vj[ JLH inboVXp H ^ π boV a; VXWZVXW H ^ ÕØV7P q . π(q) ∂ ∈ X(R)k ∂ti SUVXN y zN a:m ∂ ∂ π∗ [Xi , Xj ]q = , = 0. ∂ti ∂tj IF KEM VjW [X , X ] ∈ ∆ VXN y+P π K p H b H inô1pXb~}1y S´zN a:m [X , X ] ≡ 0 =×FIKEM VXWPÚ[ H b b~} JP N JLH i H [ VjN i
JBVjN [V)p VjN iL}y SÃzN a:moM Pk H W m PRkI[ HBH iLY K k P N J PRiLVXkYynpXVji S H;a:m i j q ∗ q Xi = i ∂ , ∂xi j i = 1, ., k [B[ H iIP i H;q a p zN J V JJ a =h=E= a VjN i JBVjN [Vj[BinV[P TH:JnJ i VXN ypXy H [Py P N a P ∆ V a:m K k J V a i PN WZy H [Py P N a PWEVXynp S K ynpXVXkIb K kY1Vjk TH k J Õ PRN rPk Pp VjN i K k JH:^ J VjinV+P = X M Vj[ JLH inboVXp H ^ [cboV a; VXWEVXW Hw^ VjN i JBVxN [ V N M VXW a VXkVji PN W Jl= k+1 n ∂ ∂xi i ý 2. 2.1 Cauchy-Kowalewsky tétel Analitikus függvények ÊÌÍ Ë º;º1Î ¹¾ ¼»@¿ Æ ¼ lÆ ¼Ç Áõ¿æ¿æ¼ Á ½ Í Ðn¼ Î Æ ¼½ ¼ ¹» ÎR¹ ¼ jÑ Ñ´Í Ë ½ nÄ ¼Æ»¹ D¹A¿¿¹XÆ Ï ÄA¿ É Ò Æ ¾Ð ¼» ÄÉ ä ¼Ï ¹ È¿ Æ ö£É Æ ½ Æ ÉÇ Æ ½ É Ë Ñ ÆAÈÉÇ É ÆAÊ þ ý ®Ñ ÒoÁZ¼À¹¼ È ¹¿ É ç Ï ÆlÑRÆAÑ 5 Definı́ció u(x1 , ., xn) p = (ξ1 , ., ξn) ∈ D u(x1 , ., xn) = ∞ X i1 .in ai1
.in (x1 − ξ1 )i1 · · · (xn − ξn )in :? =² boVXkk mDK rVXk M PWZP K W m VXk x = ξ VjN i JBVjN [Vx[BiLV+[ H k M Vji a VXky-P y H i S PR[][ H iPp JDN a N N J H M a S°N a:m J H M a´N Ó Ôx= |x | < xi V W PkcPrypXW } [ k Vji VXky VXyUV VXkWZV VXyVXkÚ[ k Vji PWP ?? 8B=² pPk1PW KhJLK [D}y n} q a;a:MVjN k m k mDK W MUPN koP[ PRN iL PN k m ynp H iOY KEg VxiLVXkQ KlPN WEP J1H N VjN yOP)YV i KEMUPN W J ÕØP K yPk1PW KEJLK [D}y =¬ YVji KEMOPN W J ÕØPB Megjegyzés. i i i i νj ∞ X Y ∂k u i1 in (ij + µj ) ν1 νn = ai1 +ν1 .in +ν1 x1 · · · xn ∂x1 .∂xn µ =1 i1 .in j tD=²UJnJH N W S H;a:m M PRW`P K>MV N a:J VXWZVXkynpXVxiUY KEg VjinVXkQ KlPN WZ1P JH>N S b V N a kVXbPk1PW KEJLK [B}1y = ´WPp j=1.n 1 e − x2 , . f(x) = ha x 6= 0 n} q a;a:MVXN k m kVXb PRkPRW KEJLK [B}yP 0 [ Hq in0,k m VXpXhaV JDVjN rVXxk@= b 0 K k1YVXkfYVji
KEMOPN W J ÕØP 9 P 9R rPk S Y1V)P L} q a;a:MVXN k m bcP a PÙkVXb p VjN iL}y = <>=² kPRW KEJLK [B}y L} q a;a:MVXN k m Pk1PW KEJLK [B}1y L} q a;a:MVXN k m V K y²Pk1PW KEJLK [D}y = ´W¯ f(x) = ∞ XM Mr xn , = r − x n=0 rn PRkPRW KEJLK [B}y L} q a;a:MVXN k m rVrVXVXW m V JJ VXy zN J Õ }>q [ÚPp |x| < r PRkPRW KEJLK [B}y L} q a;a:MVXN k mBJlS PR[][ H iPr K k H b KlPN W K y JBV N J VjWÃPRW`P T Õ PRN kIP u(x) = x1 + . + xn ∞ XM Mr = (x1 + . + xn )n r − (x1 + . + xn ) n=0 rn y H i²[ H k M Vji a VXky-b K k1YVXk = ∞ X i1 .in =0 M ri1 +···+in |x1 | + · · · |xn | < r (i1 + . + in )! i1 x1 · · · xinn i1 ! · · · i n ! jV N i JBVxN [BiLV = ý ¿nÎ Æ ¾ ¼»Ð É ÄA¿ Ò ÆXþ É Ä ÆA¾ ÇÿþxÆ Æ È Æ Ï ÈÆ ¿¹ Ç þ ¹Ð Í Ë Ç Ï ÈÉ º» ® 6 Definı́ció (Majoráns sorok) P p = ai1 .in xi1 xin p<P ÈÆ ¿nÎ Æ ¾ ¼»>Ð É ÄjÏ ÆAÑÆAÑ P
= P αi1 .in xi1 xin ||ai1 .in || ≤ αi1 in 2.2 A Cauchy-Kowalewsky tétel másodrendű PDE-re Vx[ K k J y }>q [ÚP Ó {Ô F(x , ., x , u, p , p , p , , p ) = 0 b PN y H Y>iLVXkY }^ e74æJl=´ [VjpXYV JLKVxN i JBVjN [ VXW JBV N J VXW J Pp S Pk1PW KEJnK [D}y VXW }1q WEV JnJ VXW zN i¯Õ}>[ WZV S = (x , ., x ) | f(x , , x ) = 0 , P H W P ( ) 6= 0 S°VXN yßVXpP+[VXpjY1V JLKVjN i JBVjN [[ H b T P JLK r K W K y£Pp Ó {Ô V a:m VXkWZV JnJ VXW S PpXP P VjÓ W }q WZV J VXk P boV a; VXWZVXW H ^ b PN y H Y>iLVXkY } ^ YVji KEMOPN W J PR[Ök K kQXynVXkVj[IVXWZWZVjk J b H kY PN yrPk PJRi K {Ô JnKV a:m Vjk1 `H WEV JnJ VXN W =´N V a:m }>[ VXW JLHAMUPRN rr P N S H;a:m Pp S V a:m p TH k J Õ PRN rPk×P)[:PiPR[ Vxi ynp [D}y iLb PxÕ PRiP 1 n 1 1 n n 11 1 nn n n ∂f i ∂xi X ∂F ξi ξj 6= 0. ∂pij ij V a:m¬}>q [ VXW S H;a:m SUVjN y²rV M VjpXV J Õ }>q [ PRp };N ÕU[ HBH
inY K k P N JDVjN [P J 1. Kezdeti érték transzformálása ∂f ∂xn y1 = x 1 , PQ H r K b P N J i K 6= 0 . yn−1 = xn−1 , yn = f(x1 , ., xn) 1 ∂(y1 , ., yn) 0 = ∂(x1 , ., xn) ∂f ∂x1 ··· ··· ∂f ∂x2 ··· === 0 0 ∂f ∂xn P Jnb J K iLV a }W PRN i K y = N a:m Pp (y , .,JLKy N )JBrN V M `H;VjpXa V J V a;J H ^ b K k KæJw=4};N Õ[ NH]JOH JiLY K k K P N J J PRiLJVjHk1^ YynpjVja i = PRp S kVj[ÚPp y = 0 [VXpXYV Vji Vj[ boV VXWZVXWEk VX P Vj[ k V bcP P P[VXpXYV JLK iLVXkYynpXVxi K W m Vjk1kVj[ = [VXpXYV JnK7VjN i JDVjN [Vj[ÖboV a PY PN yLP S VXk@ 0 1 1 n n u = φ(x1 , ., xn−1) p S VXk P e7 pn = ψ(x1 , ., xn−1) ∂φ ∂φ ∂2 φ ∂2 φ ∂ψ ∂ψ F x1 , ., xn−1, 0, φ, , , ., , ψ, , ., , , ., , pnn = 0. ∂x1 ∂xn−1 ∂x1 ∂x1 ∂xn−1 ∂xn−1 ∂x1 ∂xn−1 ý p~PRi a }1boVjk J }brPRk#b K
kY1VjkPRY H:JJlS [ KEMV N M V P V a:m Vjk1WEV J r H ^ W[ KZ VÕVXpj1V JH ^ VXp S PpXPp pnn = VXW J Vjynynp }>q [ S H;a:m P XV k JLK ∂F 6= 0. ∂pnn 2. Az egyenlet+kezdet érték kvázi-lineári rendszerré alakı́tása ± ¹LÒ ½ Æ Ä Æ ½ ¿¹LÄLÁZÐ Ñ ¿æÁ ½ Í Ð ½ ¹ Ñ À¹¿æÁ ¹L¾ ÄA¿ ¹ ¾ ½ ö Ä É ä Ç ¹¾ Ò Æ Äj¹XÀ Í ½ÙÆA¾ ÇZÈÆ ¿ É ¾ ¹Lº» ½ Î ÆA¾ Ñ Á ý Ç ÁZ¼¹ Æ ¾ ÄLÁZÐ ¼¹Ò ý ½ Æ Ä Æ ½ ¿¹nÄLÁZÐ Ñ ¿âÁ ½ Í Ð ½ ¹ Ñ À¹¿âÁ ¹L¾ ÄA¿ ¹ ¾ ½ ö Ä É ä Ç ¹¾ Ò Æ ¾ Ä Æ å èé`êÌë;ìí°ïæî ð ñÌî òRó Vj[ K k J y }>q [ÖPp u, p , ., p iLVÙP[ H:q M V J [VXp H ^ e74æJ Ó Ô ∂u =p ∂x Ó ?l9Ô ∂p =p ∂x Ó ?;?AÔ ∂p ∂p = i = 1.n − 1, k = 1n ∂x ∂x ! X ∂F X ∂F p Ó ?A8;Ô ∂p ∂F 1 F + =− p + p + ∂x ∂u ∂p ∂p ∂x H WPp} JLH WZy H N V a:m VXkWZV J Pp Ó {Ô
x ynpjVji K k KEJLK YVji KhMUPN W PRN ynyLPW[P TJ }>[ S K ynpXVjk 13 Tétel. 1 nn n n i in n ik kn n i n n nn n ik ∂F ∂pnn xn n kn k=1 k k=1 ik n n n F xn n X ∂F X ∂F pik ∂F ∂F pnn + pn + pkn + + =0 ∂u ∂pk ∂pik ∂xn ∂pnn ∂xn k=1 k=1 7e ¬ VXp J PRi JLH p H N [VXpjY1V JLKVjN i JDVjN [Vj[IPp xn = 0 u = φ(x1 , ., xn−1), ∂φ pi = ∂xi pn = ψ(x1 , ., xn−1) y zN [ H k i<n ∂2 φ i≤k<n ∂xi ∂xk ∂ψ = i<n ∂xi : F(x1 , ., xn−1, 0, φ, , pnn) = 0 pik = pin Bm K W MOPN kÚPp)VxiLVXYV JLK Y KEg VxiLVXkQ KlPN WhiLVXkYynpXVjißV a:m boV a;H WEY PRN yLP)VXkkVj[ÖPÙiLVXkYynpXVjink1Vx[ PboV a;H WZY PN y P N J PY;ÕØP =4vK pXy a4PRN WuÕ}[cboV a>S H;a:mÖ `H inY zN JnM Pb K P1VjW m pXV Jl= pnn δ i = p i − u xi , δij = pij − uxi xj . p Ó Ô b K P JnJ δ p VjN i J b K kYVXk ý n =0 SOVXN y zN a:m δnn = 0 Ó ?ltÔ iLV
δnn = pnn − uxn xn = (pn )xn − uxn xn = uxn xn − uxn xn = 0. p i<n Ó ?X<ÌÔ ∂δnn ∂δin = (pin )xn − (uxi xn )xn = (pnn )xi − (uxn xn )xi = =0 ∂xn ∂xi xn = 0 VXp VjN i J [VXpXYV JLKVjN i JBVjN [Vx[IboVXWEWZV JnJ = ù PRy H kW H N Pk S 1P δin = pin − uxi xn = pin − (pn )xi = ψxi − ψxi = 0, δin ≡ 0 i<n ∂δ = (pi )xn − uxi xn = pin − uxi xn = δin = 0 ∂xn [VXpXYV JLKVjN i JBVjN [Vj[ÖboVXWZWZV JJ δ = p − u i i xi = φ xi − φ xi = 0 SzN a:m δi ≡ 0 =£vIV N a}1q W ∂δik = (pik )xn − uxi xk xn = (pin )xk − (uxi xn )xk = (δin )xk = 0 ∂xn ob Vji J P δ ≡ 0¯J b PRN i×rVXSW P N N Jna:J m }[ =Û [Vj=pXY V JLK# VjN i JBVxN [H Vj[ H boVXWZWZV JJ N δ S£N a:=m p − P u =φ −φ =0 z δ ≡0 δ [øN Pp k yLPkøkB}WZW PR[ z p[ VXW m V JnJ VXy zN J V JH ^ [ÚPp u boV a; VjWZVXW H ^ YVji KEMOPN W J ÕØP KhM PW = a:m Ó ?X<ÌÔ V a:m VXkWZV J r H ^ W in xi xk
xi xk ik xi xk ik ik F(x1 , ., xn, u, ux1 , , uxn , ux1x1 , , uxnxn ) = 0 ÛMDK pjy a´PN W J V a:m Vjk1WEV J iLVXkYynpXVxil 3. A kvázi-lineáris egyenletrendszer speciális alakúvá transzformálása X ∂qi = ∂xn Airl ∂qr + Bi ∂xl Ó ?A;Ô i = 1.N [ VXpXYV JÖVjN i JBVjN [Vx[ Ó ?lCÔ q (x , .x ) = φ (x , x ) p PN W J PW PN k H yUVXynV J rVXk#PRp A L} q a;a V J Pp x , ., x , q , , q æJH ^ W = H H;a¬VXN kk1Vx[§PpXPpokB}WZW P N MUPIN PRW`PR[ zN J Pk K P ê ð é Az első transzformáció ~ b î ð î ð iLVXkYynpXVji V N Jl= N Õ MOPN W JLH p H N [ Q = q − φ =w [B[ H i Pp x = 0 KET VjiLy zN [ H k P Q = 0 J VXWuÕVXy }q W = N a:m PW`P[ zN J Õ}>[ÚPiLVXkYynpXVji JXS H;a:m PRp A VXN y B Második transzformáció } boVjk1k mDK y V N a kV L} q a;a Õ Hq k#Pp x ¯JRH ^ W = VXp `H iLb PRN W K yLPkcrV M VjpXV J Õ }>q [#Pp x ¯J b K k Jß n} q a;aH^ MOPN W JLH p H:N
JlS PplPprV M V pjV J Õ }>q [JLK7P N QJBN J L} q a;aHø^ MOPRN W JLH KEp T H:N J P N H = = 1 V a:m VXkWZV J V J P Q = 0 [VjpXYV Vji Vj[V Pp x = 0 VjiLy z [ k r=1.N l=1.n−1 i 1 n−1 irl i 1 1 n−1 n 1 N $#&% ( % %) %*#&%#&% + i i i n i irl n n ∂QN+1 ∂xn N+1 n N+1 i ý VXW zN i¯Õ}[PkkP[ VXW JBV N J VXW V N JXS H;a:m Pk1PW KEJLK [B}1yboV a;H WZY PN yW V N J VXp K [ =4FIK k1YVXk J P JnMUPN k m y H irP zN i M PB 4. Megoldás létezésének bizonyı́tása qi = Airl = ∞ X cii xi |i|=0 ∞ X = i1 .in =0 Bi = cii1 .in xi11 · · · xinn ∞ X i j airl ij x q = |i|+|j|=0 ∞ X ∞ X i1 .in−1 =0 biij xi qj = j1 .jN−1 =0 ∞ X q kVj[ x ynpXVji K k JLK YVji KEMOPN W J Õ PRN iLP |i|+|j|=0 r i1 .in−1 =0 j1 .jN−1 =0 ∞ X il cri1 .in xi11 · · · xill −1 pXVj[ÖynpXVji K k J P Ó 8:9Ô V a:m Vjk1WEV J 1 .in =0 · · · xinn = ∞ X i1 .in =0
(il + 1)cii1.il+1 in xi11 · · · xinn (in + 1)cii1 .in+1 xi11 · · · xinn = jN X j1 X X X in−1 i1 1 i1 N iN = airl x · · · x c x · · · c x i1 .in−1 j1 jN−1 1 i1 iN n−1 r,l X i n−1 bii1 .in−1 j1 jN xi11 · · · xn−1 X i · (il + 1)cri1 .il+1in xi11 · · · xinn X j1 X jN iN c1i1 xi1 ··· cN x iN VXkY1Vjp M VÙPboV a; VXWZVjW H ^ P nJ MUP N k mH [:P J PY H N Y K [cV a:m + , i n−1 bii1 .in−1 j1 jN xi11 · · · xn−1 qj11 · · · qjNN l ∂qr = ∂xl i X i j1 jN i1 n−1 airl i1 .in−1 j1 jN x1 · · · xn−1 q1 · · · qN X X V a:m Vjk1WEV Jl= FIKEM VXW)P Õ H r1r H WZY1PW H k PN WZW H N [ KZ VÕVXp VXN yØrVXkÛPp l ≤ n J VXWuÕVXy }q W S PRp Pp H k H y-P JnMUPN k mH [IV a:m¬} q JnJ 1P J1H;N K kP[ Hq yynpXVX1Py H kW zN JPN y PRN r H N WÃPY H N Y K [ÚV a:m iLVj[B}>iLp zN M `H iLb~}W`PB (in + 1)cii1.in+1 xi11 · · · xinn = Pii1 .in (airl , bi , ckl1 ,,ln ) xi11 · · · xinn n
(in + 1)cii1 .in+1 = Pii1 in (airl , bi , ckl1,,ln ) 5. A megoldás konvergenciájának bizonyı́tása ob V a;H WEY PRN y)[ H k M Vxi a VXkQ KlPxN Õ PN k1PR[ør K p H k mzN JPN yLPcr K p H k mzN JPN y PN H p×boV a PY}k>[øV a:m H W m PRko e7¬¯JlS boVXW m bcPÕ H i PN W|ÕPPRp-VjiLVjY1V JLKEJlS£VXN y M PkcPk1PW KEJnK [D}y´boV a;H WZY PN yLP =4F P Õ H i PN ky² e7 V a:mÚH W m PRk X Ó ?As;Ô ∂σ ∂σ = A +B i = 1.N 1.lépés: stratégia, majoráns PDE fogalma i ∂xn ∗ irl r=1.N l=1.n−1 r ∂xl ∗ i ý V a:m Vjk1WEV J iLVXkYynpXVxi+P σ = 0 Pp x y zN [ H k S PR H W A < A VjN y VXN y 0 ≤ |b | < b Ô S>JLHAMUPRN rr P N M PRk 0 ≤ |a | < a i ijk ∗ijk i σi = n ∗i X ∗ ijk ijk Bi < B∗i S PplPRp γii1 .in xi1 xin a:P k1m PW KEJLK [B}1SÃy-N a:bom V a;H WZY PN yLP =ÙFIKEM VXW£PcboV a;H WZY PN yy H i PN k VXWZW V N T4H ^ P T H W K k H b H [ÖboV a V VXpjk1Vx[ z (in +
1)γii1 .in+1 = Pii1 in (a∗irl , b∗i , γkl1 ,,ln ) [B[ H i cii1 .in+1 = Pii1 in (a, b, ck) ≤ Pii1 in (|a|, |b|, |ck |) ≤ Pii1 in (a∗ , b∗ , γk ) = γii1 in+1 , P pXPpwPpøPk1PW KEJLK [D}ycboV a;H WZY PN ycbcPÕ H i PN WZk K `H;a ÕP PpøVjinVXYV JLK V :a m jV k1WEV J iLVXkYynpXVxi boV a;H WEY PRN y P N JlSzN a:m VXp+} J1H N rr K@K yU[ H k M Vji a VXkyWZVXynp = v#PRN W`Pynp J P J1H N } N a:m V a:m k1P a:m M VXN y[ K QXy K r S H;a:m Pp 2. lépés: a majoráns PDE Airl VXN y B [V J bcPÕ H i PN WuÕØP+P i Mr boV a; VXWZVjW H ^ e7 P H WPp r − (x1 + · · · + xn−1 + q1 + · · · + qN ) ∂q Mr = ∂xn r − (x1 + · · · + xn−1 + q1 + · · · + qN ) xn = 0 . X ∂qr ∂xl +1 y zN [D H p J PRi JLH p H N [VXpjY1V JLKVjN i JDVjN [Vj[ q = 0 S i = 1.N =4 r,l i qi = Q(x1 + . + xn−1 , xn ) = Q(X, xn ), rV M VXpXV JBVjN y V N M VXVXW¬P e7 ∂Q Mr = ∂xn r − X − NQ P[VXpXYV JLK
VXW JBV N J VXW Q(x, 0) = 0 PRp i = 1.N ∂Q N(n − 1) +1 ∂X boVXWEWZV JnJl=/ boV a;H WEY PRN yX xn = 0 p (r − X)2 − 2Nn Mr xn r−X Q(X, xn ) = − nN nN Pk1PW KEJLK [B}1y°boV a;H WZY PN yßPp = (X, xn ) V a:m [ K ßy [ Hq iLk m VXpXV JBVjN rVXk = ! 3. Formális integrálhatóság V PRi J Pk Pq WZVji V H iLVXb a Vjk1VxiPW K pjVXy J V PR}1Q m]HA PWZVXyØ[:P 1V H iLVXb S K k J VynVXkynV J P J)J V kB}b~rVji H; V B}1P JLKZH ky K y+k H:J k1VjQXVXynyLPi K W m V ]}PRW JLHIJ 1V k]}1brVji H; }k>[Dk HA k }1kQ JnKZH ky S PkY J 1P J k H k1V H; J V M Pi K PRr1WZVXy T W`P m P T PRi JLKh QX}W`P ii H WZV = M K SJ T JLK `H H; £J mÌH y V~P V~yLP Y V PRi QX}W`PRi iLb V P}Q PRWZVXy[PÚy m y J Vjb K b T W K VXy J P J `H inbcPWBy H WE} JnKZH ky4PW P m y4V K y JX=´ K y K y´k H:J4J VßQlPynV `H iP a
VXkVjiPW y m y J VXb# H r1y J iL}Q JnKZH ky QlPRk PRi K ynVÖPkYrVÖVx T W K Q KEJ W m Q H b T } J VjY = ù HA V M Vji SUKE `H iLbcPRW K k J V a iPRr K W KEJmÖH; PkPk1PW m]JLK Q)y m y J VXb K yVXkyn}>iLVXY SJ V `H iLbcPWÃy H WZ} JLKZH ky Q H k M Vji a V S Py K k J 1V P}Q m]HA PWZVjy[:P~QlPynV = 1Vßy KhJ }1P JLKZH k K y´y K b K W`PRi JLHJ V H kV `H iy m y J VXboy H; W K k1VXPRi´PW a Vxr1iLP K QOV ]}1P JLKh H kyßPkY J V7Pk1PW H;a:mK yOk H:JßH kW m× `H iLbcPRW = P+W K kVlPRiOy m y J VXb K y K k J V iPoVji `H iLb Ó K¯= V =´J V)k]}1brVji H; V B}1P JLKZH ky K y J V)ynPoV+PRy J VkB}brVji H; }k>[Dk H k M PRi K PrWEVXyUPkY J VbcP J i K K yOiLV a }1WZPRi Ô£J VXkÖPÙy H WZ} JLKEH koVx K y J yPkY KhJßK yU}k K B}V = >H iP a VXkVjiPRW¬y m y J VXb SH r1y J in}1Q JLKZH kyP TT VlPil J 1V m QlPk rV H r J P K kVXY r m Q
H b T } JLK k aJ V ;Q1PRiPQ J Vji K y JnK Q)YV J VjiLb K k1Pk J y Ó K Q#P H }k J y JLHa;KEMBK k a PWEW J 1V W K k1VXPRiinVXW`P JLKEH k1y£rV J VXVXk J VV ]}1P JLKZH ky Ôx= VXk J VXynVQ H b T P JLK r K W KEJm Q H kY KhJLKh H kyUPRinVyLP JLK yô1VXY SÌJ Vy m y J Vjb QlPkorV T } JUK k J 1V iPRboVji `H inb KEJ oy H boV iLVjV T PRiPRboV J VjiLy =´ VXkÖP T PRiPoV J i K pXVXY PRb K W m H; y H WZ} JLKZH kyOQlPkcrV H r J P K k1VjY S PkY J VkB}brVji H; ÃJ V T PRiPoV J VjiLyßYV T VXkYy H k J ViPRk[ H; J V)y m y J VXb =>H i J 1V y m T y J VXboy H; H H e H J H;a:V7m y KEJ H }1P JLKEH Tk H K yUy KJLb H K J WZPRi =¬ JÙV J H r1y J+J iLJ }Q JLKEH k1yßPi K J y K k K aÙJL K i H b J J 1V û Vjk1QjVjiQ b W Q ininVXy kY V PQ 1P 1VQ 1Ó PRiLPQ Vji y Q YV Vji b K k1Pk J yß1P M V JnH×M Pk K y PkY J
1V+kB}b~rVji H; ¬T PRiPRboV J VjiLy K Q K k J K y-QlPyV PRinV+PRir KhJ iPRi mc }kQ JLKEH k1y Ô QXPkIrVVx T W K Q KEJ W m Q H b T } J VXY = V J }1yQ H ky K YVji J Vy m y J VXb H; T Pi JLK PWY KEg VjiLVXk JLK PWV B}1P JLKZH ky Ó ?l{Ô F (x , z , z , ., z )=0 1VxiLV ν = 1.p PkY / / / / / 10 0 32 / / ν zµa = ª È ¹-лÐl¿¹LÒ ¼ Í ÒIä¹LÄnÐ ∂zµ , ∂xα a µ µ a µ a1.ak zµa1 ,.,ak = ., ∂k z µ . ∂xa1 . ∂xak ÁZÐ Ýë ñ #í éæì ð ñ ZÁ ¼ Æ ¼ ¹ÁEº È ä É Ä ÈÉBÉ À ÉÊ x Ï1Á ÊÃÊæÉ Ä Æ ;¼ »cÄj¹ AÆ Ç ÎR¹LÄLÁ Ê »ÁZ¼>º A , A , ., A ∈R Ó ?lÔ F (x , A , ., A ) = 0, ¿ È ¹LÄx¹-¹ ÁZÐl¿æÐ Æ ¼¹ÁEº È ä É Ä ÈÉBÉ À U ÉÊ x Æ ¼À Æ Ð ÉÇ Í ¿æÁ É ¼ z (x) À¹ 1¼¹XÀ É ¼ U Ð Í Å È 7 Definı́ció µ µ a 54 "6 87 696 %;:8) =< 6 % µ a1 .ak ν 0 o
µ µ a1.ak 0 µ ¿ ÈÆ ¿ zµ (xo ) = Aµ , zµa (xo ) = Aµa , åå VoynV JH; UJ V (A , A , ., A ) yLP JnK y ZmDK k a Ó ?lÔ)K yÙQlPRWZWZVXYfP k ð ë ë ñ ò ë ð éë;ì Ó H i éæìé ð é ñ ñÌðñ P J x Ôx=£ 1V-ynV JßH; PWZW J V kJ H iLYVji `H iLbcPW y H WE} JnKZH kyßP J x K yßk H:J VXY R = k KZH: J Vji ßH iLYy SJ V~ e7 Ó ?l{Ô-K y Ó W H QXPWZW m>ÔK k J V a iPRr1WZV K køPokV KZa Ìr H iL HBH Y H; x ÊæÉ Äc¹ÎR¹LÄ» F ∈ ÎRR¹LÄnÁ »ÁZ¼>¿ Ⱥ׹L¿ Äx¹Ö¹²¹ À]ÁEÁZÂÐl¿æ¹LÐÄj¹Æ¼¿æ¼Á ¹Áhº ¹ È ä É Ä ¿æÈÁ É]¼ É À U Ï]ÉÐ Ê Åx ¿ Æ ¼À ¿ Ê È ÆAÇ Í Æ É à ã Í È ÈÆ f ∈ C (U, R ) µ A )*B 6 µ a C6ED zµa1 .ak (xo ) = Aµa1 ak 6F ) %) ?>=@ µ a1.ak 0 0 k,x0 0 0 ∞ k,x0 G p 54 0 (jk f)x0 = F0 . /H J mcJ K J a K
KEJmc m H K =OUJ JH H]H `H iIP `yH in}bcY PWy H V WZ} JLk KZH V k izPRr =W (z , P .,W zi²yn)Vji Kæ= VVjy-= QlPPk `H riLV+bc}PynWVXYynVji K VXyIôynPiLyJLK y ZmBkK V+k afW J 1[DVy V ]}1P JLKZH k 1 m / z= X Aα (x − xo )α Ó VjiLV α K yP×b~}W JLKh¯K kYVxÖPkY A = (D z)(x )Ôx= ´} JnJLK k a z K k JLH×J VÙV ]}P JLKEH k S VÙQlPRkQ H b T } J V A r m y H W MBK k a PW a VjriP K Q)y m y J VXboy =² VXk ÙV QlPRkW HBH [ P JßJ V)Q H k M Vji a VXkQXV H; /J 1V `H iLbcPWy H WZ} JLKZH k = α α α! α / o α ¸¬¹¿ Í Ð Å É ¼ÐnÁâÀ¹LÄ+¿ È ¹¹ Í Æ æ¿ Á É ¼ 3 Példa G ∂2 z ∂2 z + = 0. ∂x2 ∂y2 2 KEJ H r MBKZH }y²k H:J P JnKZH ky EK J lQ PkIrV i KEJnJ VXk@ z11 + z22 = 0. V)Q H V ×Q K VXk J y ;H ÃJ 1 V ` H Li bcPWyVji K VXy M Vji KZ ZmBK k a J VV B}1P JnKZH kIb~}y J yLP LJ K y Zm H / A11 + A22 = 0. P[ K k a~
`H iVx>P T WZV A = 1, A = −1 PRk1YIQ H]H y K k a V1P M V+P 2 õH iLYVji-y H WZ} JLKZH k@ (0, 0, 1, 0, −1) = 11 th 22 A1 = A2 = A12 = 0 S U V Pk JÙJLH Q H b T } J V J 1V H:J VjiQ H V ×Q K VXk J y ;H OJ 1 V `H inbcPWV T Pky KZH k S V×kVXVjY JnH Y1Vxi KEM V J V V B}1P JLKEH k PkYfy J }Y mJ V ð Xò ð ë ë;ì ñÌð éØë;ì H; J Vy m y J VXb# H / ?> %JIK) ML ) C6 : z11 + z22 = 0 z111 + z122 = 0 z 211 + z222 = 0. V)k]}1brVjiny A , A , A b~}y J yLP JLK y ZmcJ V)y m y J VXb# i ij ijk A11 + A22 = 0 A111 + A122 = 0 A 211 + A222 = 0. V J PR[V J V A PkY A PyOPRr HM V S] VQlPkor1} K WZYoP 3 õH iLYVjiOy H WZ} JLKZH k K Q Vx J VXkYy J V 8 kY H iLYVji-y H WZ} JLKZH kÖPWEiLVXPY mc `H }1kY =H i²Vx>P T WZV: i ij rd A1 = 0, A2 = 0, A11 = 1, A12 = 0, A22 = −1 PkY A111 = 0,
A112 = 0, A122 = 0, A222 = 0. VXk VQlPRini m H } J£J K y H:T VjiP JLKZH k PynVjQ H kY JLK boV S: V H r J P K k P7y m y J VXb H; ô M V V ]}1K P JLKZH ky = KZ Z J J K yOJLH y m y J Vjb K yOQ H ky K y J VXk J°J VXk Vô1kY J V 2kY H iLYVjiUy H WZ} JLKEH k1y Q IPRiLVW VjY 4 õH iLYVji²y H WZ} JLKEH k1y S V J Q =h=E= >H iLbcPW K k J V a iLPRr K W KEJm P J x boVlPky J 1P J ñ ìí kJ H iLYVji `H iLbcPRWy H WZ} JLKZH kÚP J KZ ZJ K JLH Pk K kô1k KEJ V H inY1Vxi-y H WE} JnKZH k = x QlPRk rV)W VXY k y K yOyn H kor mJ 1V7Pr HM V-VxP T WZV S]K k H inY1Vxi JLHÙT i HAM V J 1P J°J V kJ H iLYVji y H WE} JnKZH kyUQlPkIrV)W KZ ZJ VjY K k K k>ôk KEJ V H iLYVjiy H WE} JnKZH ky Ó K¯= V =´J 1VxiLV+Vx K y J y²P `H iLbcPW y H K WE} a JnKZH k ÔxK SD VÙKhJ kVXVXY JLH y J }H;Y mÚJ VÙHAQ H ky K y J VXkQ mIH; JLPKEH k P=W a VjrH iP a K Q)ym m y T J Vjb KQ H a)k J
J P Kh k k PRk k>ô1k VßkB}b~rVji }1k>[Bk ky°PkYoV B}1P k1y } W y VlP[ k 1V PRi J PRk Pq WZVji V H iLVjb yLP m y J P J-KZ ¬J 1V)y m y J VXb K y K k MH WZ} JLKhM V ×PkY iLV a } W`Pi Ó J VXynV)k H:JnKZH ky K WZWrV K k J i H Y}1QjVXY K k J V)kVx J yVXQ JLKZH ky ÔOH kV H k1W m k1VjVXYy JLH y J }Y mcJ VôiLy JT i H W H k a P JLKEH k ë;ì ò é ð k ð ë ò í òjð 2 / th 0 0 , / 0 0 0 N O %) ?> % ?> ) %) %B Fν (x, zµ , ., zµa1ak ) = 0, é é ~ò ò ë ò ð ë ðë é ñ ë ì éØë;ì í k ì ë í ò ë ò ð ð ð ò jò ð PQ> ;7 > ZX %&RT[ ) %) 0 D L=L % % RT)%;: DU6 < S 3 % X C6ED % ) % ) th @ ) C6ED [ ?> % %B ?> % ñ éØë;ì ó ðé ò ν = 1, ., p ðì ò éí Xò ð æé ì é ò âé ì Dë ë ñ ñ í#ðéâì ð ñ ñ (k+1) ó )VR 1W A 7 A ?> % < % 6 A 6Z6 )*B %B % R YX C6ED @ %;:) =< 6 % th
4 Példa (A Cauchy-Kowalewsky tı́pusú másodrendű PDE) X ∂qi = ∂xn Airl ∂qr + Bi ∂xl i = 1.N, ÆAÈÉǬÆAÑ A ¹L¾ Ð B ÒI¹L¼1¼;»ÁZÐ ¹L¾ ºD¹ ½ ¼¹Ò ÊÍ Ë º;º¼¹ ½ Æ x ý ¿ É ç Ç å p N = 1 VXN y n = 3 VXynV JBVXN k PpV a:m VXkWZV J r=1.N Ó 8:9Ô l=1.n−1 irl i n Ó 8D?AÔ ∂q ∂q ∂q = A1 + A2 +B ∂x3 ∂x1 ∂x2 PpXPp PWZPR[ } N =4 [VXpXYV JLKVjN i JBVjN [ÖPp P H WP Ó 8;8;Ô TH k J rPkIWZVj1V J P q3 = A 1 q1 + A 2 q2 + B x = (x1 , x2 , x3 ) j1 (q) = (x, q, q1 , q2 , A1 q1 + A2 q2 + B), q, q1 , q2 J V J ynp H ^ WZV a VXy-ynp PN b H [ =´ Ó 8;8;Ô V a:m VXkWZV JT i H W H;a´PN W PRN yLPÙP Ó 8:tÔ Ó 8<ÌÔ q13 = A1,1 q1 + A1 q11 + A2,1 q2 + A2 q12 + B1 q23 = A1,2 q1 + A1 q12 + A2,2 q2 + A2 q22 + B2 V a:m Vjk1WEVÓ J Vj[][VXW/V a/VjN ynp zN JLK [ K Ó 8;8;ÔæJl=O kkVj[ V)b PN y H Y>iLVjk1Y }Ö^ boV a;H WZY PN yLP S P K V a:m] rVjk#P 8;;ÔOT i H W H k
a4PRN W PN yLPÙP Ó 8;;Ô j (q) = (x, q, q , q , q , q , q , q , q , q , q ), PÓ H WUP q,Ó q , q , q , q , q J V J ynp H ^ WZV a Vjyynp PN b H [ S P q , q , q , q T VXY KZa P 8;8;ÔVXN yßP 8<ÌÔ PN W J PWboV a 1P J>PRN i H p H:JnJX=´FIK k J PpW P N J P J1H N Pp-V a:m VXkWZV J inVXkY1ypXVjinr H ^ W S Pp x ynpXVji K k KhJLK YVji KhMUPN W J PR[BiP MH k1P J [ H pXk1PR["PpwV a:m VXkWZV J Vj[ = £a:m ynp K k J#T i H W H k a´PN W PN yLPR[ H i²PpPRW`PQXy H k N m PRra:rm iLVXkYJ } ^ YVji KEMOPN W J PR[ÖN PpK }N ÕßV a:Jm VXkWZV J Vj[]rK VXk kVXa>b = N Õa:V m WZVjk1kVj[+boV a>S P k Y1PRiLPRr };ÕÃV VXkWZV VXp k Y1PRiPRr };Õ ynboVxiLV WZVjkÕØVjWZVXk [)boV VXpjVj[IkVXb WZVXV J k1Vx[ÖVjWZWZVXk J b H kY PRN y H yLPR[ S PpXpXPpÙPiLVXkYynpXVji K k J V a i PN WZ1P JH N WEVXynp = q33 = A1,3 q1 + A1 q13 + A2,3 q2 + A2 q23 + B3 1 1 2 1 11 12 2 3 11 12 13 22 22 23 3 33 13 23 33 3
¸¬¹¿ Í Ð Å É ¼ÐnÁâÀ¹LÄ+¿ È ¹-лÐl¿¹Ò 5 Példa ∂z = f(x1 , x2 ), ∂x1 ∂z = g(x1 , x2 ). ∂x2 ôiLy J²H iLYVji K k KhJLK PWQ H kY KhJLKZH kÖP J ⇔ x = (x1 , x2 ) z1 = f(x), z2 = g(x). QlPkIrV a;KEM VjkIr m j1 z = (x, z, f(x), g(x)). Ó 8:CÔ Ó 8;s;Ô V T i H W H k a P J VXYÖy m y J Vjb K y z11 = f1 (x), z12 = f2 (x), z21 = g1 (x), z22 = g2 (x). pXVj[øynpXVji K k J P VXk JLK j z [VXpXYV JnKVjN i JBVxN [økVXbb K k1YVXkVXynV J rVXk T i H W H k a´PN WZ1P JH>N S PpXPp+PboV a;H WZY1P J1H N y P N a k1PR[×V a:m ynp }q [By V N a VXy VXW JBV N J VXWZV S H;a:m P Ó 8:{Ô ∂f ∂g = ∂x ∂x K k J V a i PRN WZ1P J1H N y P N a;K VXW JBV N J VXW J VXWuÕVXy }q WuÕ Hq k S²VXN yPpVXYY KZa;K/J PRkB}WZb PN k m P K k>[Br H N W K ynboVji JlS H;a:m VXpÙP VXW JDV N J VXWVXWZV a VXkY H ^ K y = 1 2 · L¹ Äj¹LÐnÐ Í Ë ½ ÆAÑ ¿
Æ 6 Példa z(x) = z(x1 , x2 , x3 , x4 ) 2 ÊÍ Ë º;º1Î ¹¾ ¼»@¿Ï Æ ÒoÁEÄj¹ Ó 8:Ô ù PRy H kW H N PøVXW m pXV JXS b K k J Pp#VXW H ^ p Hø^ TßVXN WZY PRN rPk S PplPpIk1Vjb T i H W H k a´PN WZ1P J1H N V a:m [VXpjY1V JLK VxN i JBVjN [ S QXyLPR[÷PR[][ H i S 1P f = g = pPp K k J V a i PN WZ1P J1H N y P N a;K- VXW JDV N J VXW MBK ynp H k J QXynPR[ÖP~b PN y H Y K [ T i H W H k a´PN W JOMDK pjy a´PN W`P J PR[ H i²PY H N Y K [ = ÞwVjN yP sTUVXN WZY PRN []rPk J PRW PN W JUK k J V a i PN WZ1P J1H N y P N a;K VXW JBV N J VXWZVx[B[VXW Megjegyzés. J PRW PN WE[ H pX}k>[ S PoVXW m PpUV a:m Vjk1WEV J Vj[]rVXk J PW PN WZ1P JH N V a:m/} q JJ 1P J1HN L} q a;a:MVXN k m Vj[BinV MH k1P J [ H p K [ = boVXkk mBa;K rVX kH^ VXpXJ Vj[§P LH } q a;a:N Ma;VXH N k m Vj[ Ó Ó P TßTßN VXN WZY N PRN []rPRk§PÓ p 8:CfÔ¬VjNK yP J gM Ô kÓ 8:VXb Ô iLVjk1YVXWh[VXpXkVj[ PboV V VXW }W`PÕY ky P [][:PW
P VXWZY PR[BrPk P WZWZV V V V a:H m VjJk1WEV J Vj[ a:mJ VjWuÕVXy J }q W VXN ynV ÔxS PRJ [B[ NH i£P-J1inH N VXka:Y1m¬ypXq VjJniJ k1VjJ1b HN nK kq Ja;V a:a Mi NPN WZm1P J1H>N J = boN VXJLkK k mDK rVjk a;MD Kh ynp k Pp7V VXkWZV Vj[BrVjk PW PWZ1P V } 1P } VXk Vj[ VjWuÕVXy z [oPboV V WZVjW H^ K k J V a i PN WZ1P JH N y P N a;K VXW JBV N J VXWZVj[V JlS PR[B[ H i£P-iLVjk1YynpjVji T i H W H k a4PRN W PN y P N M PW };N Õ/V a:m Vjk WZV J Vj[V J QXyLPR[IPbcP a PyLPr1rÚiLVXkY } ^ YVji KhMUPN W J PR[BiP+[P T }k>[ = 7 Példa · ¹LÄj¹LÐnÐ Í Ë ½ ÆAÑ ¿ ÆAÑ z = z(x , x ) ÊÍ Ë º;º1Î ¹L¾ ¼»¿Ï Æ ÒoÁEÄj¹ Æ À É ¿n¿ A ¹¾ Ð A ÒI¹ ÇZÇ ¹A¿n¿ ¿¹ Ç þ ¹Ð Í Ë Ç¬Æ Ó t;9Ô z − A z = 0, z − A z = 0, . pXVXk#V a:m Vjk1WEV J Vj[Bk1Vx[ x rPk M V JnJ VjWZy H ^ iLVXkY } ^ boV a;H WEY PRN yLP K Ó t>?AÔ R = {(x , q, q , q ) | q = A q, q = A q, } PpXPpP R rVXkÖP
q ∈ R ynp PN byplPRrPY H k MOPN W`Pynp J 1P J1H>N =4 Vx[ K k J y }>q [cP Ó t;9Ô VXWEy H ^ T i H W H k a´PN W J Õ P N J z12 = f(x1 , x2 , x3 , x4 ), 34 1 1 z34 = g(x1 , x2 , x3 , x4 ), 12 2 1 1 2 2 2 0 x0 ,1 0 1 2 1 1 2 2 x0 ,1 z1 − A1 z = 0, z2 − A2 z = 0, z11 − A1,1 z − A1 z1 = 0, z21 − A2,1 z − A2 z1 = 0, z12 − A1,2 z − A1 z2 = 0, z22 − A2,2 z − A2 z2 = 0, Ó t8;Ô p x rPk M V JJ b PN y H Y>iLVXkY }Ö^ boV a;H WEY PRN yLP K P Ó t;tÔ 0 J2,x0 = {(x0 , q, q1 , q2 , q11 , q12 , q22 )} H W m PRkÖi VXN ypX1PWZbcPplP S P H WP Ó t8;Ô V a:m Vjk1WEV J Vj[ b K k J W K kV PRN i K yUV a:m VXkWZV J Vj[ q S q S VXN y q K ynboVjiLV J WZ VXkVj[]rVXk N N J VXN W|ÕØN VjM y }q WZkVj[ H N =´K pS V a:H;ma:VXm kWZVa:J m iLVXkYN ynpXH Vji-boV a;^ H WZY PN a;yLPRH [ VXN k N J P V b Py Y>iLVjk1Y } boV WZY PyiP z − z = 0 VXWZ1PypXk PW Py PRy P PW¬PY Y [ J VjWuÕVXy }q
WZk K VI[VXWEW)P A z + A z − A z − A z = 0 V a:m Vjk1WEV J kVj[ = Ó t>?AÔ VXWEPRynpXk PN W PN y P N M PRW@P Ó t:<ÌÔ (A + A A − A − A A )z = 0, V a:m Vjk1WEV J PRY H N Y K [ =£ [][ H i²[ V N J VXyV J WEVXV J y V N a VjyX ?:= A + A A − A − A A = 0 = [][ H iP Ó t8;Ô W K k1V PRN i K yÖV a:m VXkWZV J inVXkY1ypXVjiLkVj[÷PøiPk a ÕP BS Pp K ynboVxiLV J WZVjk1Vx[ynp PRN bcP C Ó Pp K ynboVjinV J WZVXkVj[ ÔxS Pp)V a:m VXkWZV J inVXkY1ypXVji7boV a;H WZY1P J1H>N = boV a;H WEY PRN y q, q , q , q , q , q 1PWEbcPpÙboV a PY1P J1H N } N a:mS H;a:m P qæJ)MOPN W`Pynp J Õ}[ T PRiPRb V N J VjiLkVj[ = VX P N J PRp J [:P TJ }>[ =ES H;a:m b K kY1Vjk R rVXW K VXWEy H ^ iLVXkY }+^ boV a;H WEY PRN y T i H W H k a´PN WZ1P JH N i ij 12 21 1,2 1 2 1,2 1,2 1 1 2 2 11 1 2,1 12 2,1 2 2 2 1 2,1 2 1 1 22 x0 ,1 8B= Rx0 ,2 = (x0 , q, Ai q , (Ai,j + Ai Aj )q)
| q ∈ R |{z} | {z } qi qij 4= [][ H iP Ó t8;Ô W K kV PRN i K y/V a:m Vjk1WEV J iLVXkYynpXVxi kVj[ P7iPk a ÕØP CD=4 b PRN y H Y>iLVXkY }^ boV a;H WZY PN y4QXyLPR[ H W m PkWZVXV JlS H;a:m p = 0 J VXWuÕVXy }q W = W VXN k m V a ×kVXb T i H W H k a´PN WEP J1H N b K kYVXkwVXWZy H ^ iLVXkY }G^ boV a;H WEY PRN y S PRplPp Ó t>?AÔ b K kY1VjkÖVXWEVXboV S QXyLP[ H W m PRk P K inV q = 0 J VXW|ÕØVjy }q W = A1,2 +A1 A2 −A2,1 −A2 A1 6= 0 ÊÌÍ Ë º;º1Î ¹¾ ¼;»¿Ï Æ ÒoÁEÄj¹ Æ À É ¿n¿ A ý ½ IÒ ¹ ZÇ Ç ¹A¿n¿ÒI¹ Ç ý X Ó t;Ô z − A z = 0, i, j = 1.n pXVXk#V a:m Vjk1WEV J Vj[Bk1Vx[ x rPk M V JnJ VjWZy H ^ iLVXkY } ^ boV a;H WEY PRN yLP K X Ó t;CÔ R = (x , q , q ) | q = Aq PTpXPH pH P a´RN J N rJ VXkÖP q ∈ R ynp PN byplPRrPY H k MOPN W`Pynp J 1P J1H>N =4 Vx[ K k J y }>q [cP Ó t;Ô VXWEy H ^ i W k PW Õ P X z − A z = 0, i, j = 1.n Ó ts;Ô · L¹
Äj¹LÐnÐ Í Ë ½ ÆAÑ ¿ ÆAÑ Ç ¹A¿n¿ß¿¹ Ç þ ¹Ð Í Ë Ç¬Æ 8 Példa (A 7 Példa általánosı́tása) zi = zi (x1 , ., xn) i j i i j j j 0 x0 ,1 0 i i j i j j j j x0 ,1 i j i j j j zijk − Aij,k zj − Aj zjk = 0, i, j, k = 1.n p x rPk M V JnJ b PN y H Y>iLVXkY } ^ boV ;a H ZW Y PN ynP K P i VjN ynpX1PWZbcPpXP S P H WP 0 J2,x0 = (x0 , qi , qij , qijk ) H W m PRk Ó t;{Ô (Aijk − Aikj + Aik Akj − Aij Ajk )zk = 0, V a:m Vjk1WEV J PRY H N Y K [ =E=h= [ VjN inY VjN yPp S H;a:m÷PN W J PRW PN k H yOVXy J rVXk ?:= ù H;a:m Pk P JPRN i H pX1P J ÕØ}>[øboV a PR[ PN ibcP a PyLPRrriLVXkY }§^ YVji KhMUPN W J PR[ô a:m V WE VXb~JBrN J V MV N KEJ J VXW V N M VXW PUY KEg VxiLVXkQ KlPN WEV a:m VXkWZV J Vx[boV a;H WZY1P J1H N y P N a´PN k1PR[ynp }>q [Dy V N a VXy VjW V VjWZV 8B= ù H;a:m Pk a:mH ^ p H ^ Y1V J;}q k[~boV a PRini H N W S H;a:m
PiLVXkYynpXVxiLkVj[×k K kQXy JHq rr :iLVØÕ J V JnJ Hq yynpXV n} q a;a/VXN ynV S PRplPp JLHAMOPN r1r K YVji KEMOPN W J PR[ MBK pXy a´PN WZP J PUynVXbVxiLVXYb VXN k m Vjp };N ÕØPRrr K k J V a i PN WZ1P J1H N y P N a;K VXW JBV N J VXWZVj[V Jl= 0 ]0 3.1 Eszközök a PDE leı́rásához V a:m VXk f VXN y g Pp x ∈ R TH k J V a:m [ Hq iLk m VXpXV JBVjN rVXk YVjô1k KXPN W J [ V N J×M PW H N y S k PY#iLVjk1Y>rVjk x rPk k PRY inVXkYrVXkY KEg VjiLVXkQ KXPN WZ1P J1H N L} q Ó a;a:MVXN k m=- p J b H kY;Õ}[ S H;a:m f VXN y g k PY iLVjk1Y KZa boV a V a:m Vjp K [ÖPp x TH k J rPk f ∼ gÔ S P Jk (R, R) 0 0 0 k,x0 f 0 (x0 ) = g 0 (x0 ), f(x0 ) = g(x0 ), fk (x0 ) = gk (x0 ). . p zN a:m rV M VXpjV J V JnJ ∼ iLVjW PN Q KAH N V a:m Vj[ MBKEM PRWZVXkQ K PÖinVXW PN Q KlH N Pp x V a:m [ Hq iLk m V pMXV JDHVjNN rVX nk q a;Y1a:VxMôN k mKXPRN W Jc L} qa:a;m a:MVXN k m Vj[ K J Vji
VjN rVjk ì = ´a:m K W îm ì VXk÷VjÓ[ MBKEa M PRWZVXN kQ K P Ô H ynp M JPN W m]Jq P = PW y } VXk Vj[ V x rVXW k ñ y} Pi Pk1PR[ kV VXpXp }>[ ð p f n} q a;a:MVXN k m PN W J PWiLV T inVXpXVXk JPN W J x rVXW K k PYGinVXkY }^ ÕV J V J j (f) W`PW M P a:m Hq q =4v PW H N y n} q a;a:MVjN k m Vj[ k PYIinVXkY }×^ ÕV J ÕØV K kVj[ J VjiLV)P j (f) WZPWDÕVXW WuÕ }>[ 0 k,x0 @ 0 ^ ` % ` % )% 3 D$ %*# 0 k k,x0 x0 . Jk (R, R) = {jk,x0 (f) | x0 ∈ R} J (R, R) JBVjN irVXkorV M VXpjV J V JH ^ [ H]H iLY K k P N JPN p PRN y°Pp (x, y, y , ., y ) [ H]H iLY K k P N J P n} q a;a:M VXk m Vj[ ynV azN J y V N a/V N M VXW S P H W K y `H M a:m rPp K y TH k J ) x(j (f)) = x , ( iniLPy − P TH J y(j (f)) = f(x ), (QjVXW k ) y (j (f)) = f (x ), == k 1 k,x0 0 k,x0 1 k 0 0 k,x0 0 yk (jk,x0 (f)) = f(k) (x0 ), V a:m VXk f(x) := x VXN y g(x) := x = [B[ H i4P j (f) VXN yÃP j (g) boV a; VXWZVXW H ^
[ H]H iLY K k P N JP N K SK JnM = j (f) = (0, 0, 0, 2) WZWZV V j (g) = (0, 0, 0, 0) k1kVj[boV a; VXWEVXW H ^ VXk j (f) = j (g) YV j (f) 6= S N J n} q a;a:MVXN k m Pp x = 0 rPk ?x j (g) PplPRpÖP [ V iLVXkY KZa Vx[ MDKhM PWEVXky SMBK ynp H k J b PN y H Y>iLVXkY>rVXk kVXb Vj[ MDKEM PWZVXky = J (R , R ) VXk JLK YVjô1k zN Q KAH:N JJ VjiLb VXN ypXV J VXy+b H N Y H kWZVXV J [ KEJ Vxi¯ÕVXynp J Vjk K R R JlzN T }1y } N n} q a;a:MVjN k m Vj[]iLV:o1P f VXN y g PRp x ∈ R TH k J V a:m [ Hq iLk m VXpXV JBVjN rVXkYVjô1k KlPN W J [ V N J n} q a;a:MVjN k mS PR[B[ H i f VXN y g k PYIinVXkY KEa boV a V a:m Vjp K [ÚPp x rVXk Ó f ∼ gÔ S P 2 Példa. 2 2 0 2 0 0 2 1 k 3 2 0 n m 0 0 1 0 2 0 0 n m n k,x f(x) = g(x), ∂i fα (x) = ∂i gα (x), . ∂i1 ik fα (x) = ∂i1 ik gα (x) p J (R , R ) JDVjN inrVjkrV M VXpXV J V JH ^ [ HBH inY K k P N JPN p PN y Pp (x , y , y , .,
y ) [ H]H iLY K k P N J P L} q a;a:M VXk m Vx[ ynV a>zN J y V N a/V N M VjW S P H W K y `H M a:m rPp K y TH k JK − VXY K [o[ H]H iLY K k1P J PÕØP ) x (j (f)) = x , ( iniLPy − P TH J K HBH iLY K k1P J PÕP ) y (j (f)) = f (x), (QjVXW k α − PY [o[ y (j (f)) = ∂ f (x), == n k i α α i1 k,x m i α α i α i1.ik i α k,x k,x i1 α yαi1 .ik (jk,x (f)) = ∂i1 ik fα (x), = V a:m VXk VXN y N [ V N J y H [Py P N a>= ù PPp f VjN y g Pp p ∈ M TH k J V a:m [ Hq iLk m V pXV JDVjN rVXk÷YVjô1k KXPN W J M N JlzN T }1y } N n} q a;a:MVjN k m Vj[ Ó S PR[B[ H iÖPp J b H kY;Õ}[ S H;a:m Pp JnM f VjN y g k PY!iLVXkY KZa boV a V Ha:q m VXm p K [GPJBp N p rVXH k m f ∼ gÔxSK 1P JnM M Pk p kVj[ HBSUH K W WZV VPp f(p) = g(p) kVj[![ iLk VXpXV VjrVXk W Pk (U, x) WEWZV V (V, y) Ó [ i Y K k P N J PiLVXkYynpXVjiLV S PoVXW m rVXkÚPp y ◦ f ◦ x VXN yPp y ◦ g ◦ x n} q a;a:MVXN k m Vj[ b K k J
JAzN T }y } N } ^ a;a:MVXN k m Vj[ Ô k PYfinVXkY KEa Vj[ MBKEM PWZVXkynVj[§Pp x(p) TH k J rPk = R R rV M VXpXV J V JnJ Ó W H [ PN W K y Ô [ H]H iLY K k P N JPN p PRN yynV azN J y V N a/V N M VXWboV a PY1P J1H N P J (M, N) VXk V a:H]m H Ó W K H [ N PRNJW NK Ky Ô (x , y , y , ., yJ ) [ MHBH inY J K k JnP NJ JPN pHBPNH y S KP NH J>WN K¯P = j (f) boV a; VXWZVXW H ^ [ iLY k P P PRp y ◦ f ◦ x VXk Vjrr#rV VXpXV V [ iLY k P P Jk (M, N) M k,p −1 n −1 m k i α α i −1 α i1.ik k,p f g f(p)=g(p) p M x −1 yofog y yogox−1 ûBp PRN b H W PN ynyLPRW KEa Pp H WZ1P J1H>N S H;a:m PrV M VXpXV J V JnJ Vx[ MDKhM PWEVXkQ K P inVXW PN Q KlH N kVXb L} q a;a Pp x VXN y y [ HBH inY K k P N J PRiLVXkYynpXVxiLVj[ MOPRN W`Pynp J>PN y P N J1H N W = Megjegyzés 1 ûBÓ p KEPRN g b H y VXKXynN V J rVXJ1HÌk N Ô kVX nb q a;a:MPp N mMN N Hq ynypXa:VXm y Y N VjiLVXkQ PWZN 1M P } H a;VjkH Vjk1Vx[ =
QXyLP[ m V i VjynpX1PWZbcPp P PRWÛ[VjWZWÞY W pjkBÓ }k>[ W VXk P VXW m pXV J TUVXN WZY PN }WøPR[B[ H i S 1P a W H r PN W K yLPk M P a:m W H [ PN W K ynPk Ô Pp N Pp M × N^ `H inb PRN rPk zN inP J1H>N S VXN y QjyLPR[ H W m PRk f : M N L} q a;a:MVXN k m Vj[V J MBK pXy a´PN WE}1k>[ S P H W@P π ◦ f = id VXW JBV N J VXW J VjWuÕVXy }q W S P H W π : N M P§boV a; VXWEVXW H^ T i H ÕVj[Q KlH>N = p K W m VXk L} q a;a:MVXN k m Vj[V J boV J ynp VXN ynVj[Bk1Vx[#kV M VXpXp }>q [ = TH k J H p J PRi JLH p H N ôriL}bokP[GkV M VjpXp }>q [ p ∈ M PTH p JLH Hq W H:q JnJnK TNH JXk S JnH [w1m PWZbcPp P N JlS PplæM PRpÖJANPRJBp N H W Nm PRk k [ 1PcPp P boVXW Vx[DkVj[÷P V Vjynk VXW+P N[ V T V V N T1T VXk P p = Ó p PRN ri PRN k ynplP a;aπP JLH:JnJz MH kPRWZW`P ÕVXWZVjp J;}>q [ =dÔ PRN i°VXp7N T PpVjN ynVJJ K y T J VXQ T KlPN W K J>yLPRN r1k1PRJ [ JÌ}^ k K [ S bJ V N a N ynVXb N J
Pp S S K ynJpXVXKhk MDKlJ N V J K ynp }^ WZH VN a HVXy f : M J 1P i PW yUb Y k Pp N V N WZVj[ V VXp Vjy k Vji iLV PWZ1P }k>[ ;boV ynp VXy[ Vjk S J ¯ m n J J N J q ´ S N T H KAH N H^ M × N boVXW Pp f V Pp id × f VXWVXW V VXy z Õ }>[ VXy°P π i ÕVj[Q k1PR[~PRp²VXWEy [ H b TH kVXkyinV JAHq i JBVXN k H^ T i H ÕVj[Q KAH:N J²M Vjynynp }>q [ f(p) M N=M ^ xN f 0 0 p M a b0 0 M id f M −−− N ⇔ ×f M M −−− − M × N p K W m Vjk JAzN T }y }N ô1ri PRN W J k m PW PN r H:JJ i KEMBKlPN W K yk m PW PRN r1kP[ k1V M VXpXp }>q [ =×£a:m ôri PN W J k m PW PRN r J VX P N J V a:m (E, M, π) PRN inbcPy S P H W π : E M Pr PN p K y JDVjN iniLV JHq i JBVXN k H-^ T i H ÕVj[Q KlH>N = û a:T m VXQ KXPN W K yLM PRkJnP²H ôJBr1N i PN KW J = k m PW PRN r H:JÃM Vj[ JnH iLk m PW PRN r1kP[ÙkV M VXpXp }q [ S Pb K k1YVXk ôriL}bV rVjk Vj[ i Vji y p f : M
M V a:m boV J ynp VXN yV+Pp (E, M, π) k m PW PRN r1kP[ S 1P π ◦ f = id = boH V J K ynp NVXN J ynVx[ 1PWEbcPp N JP N J Sec¯M ES æM VXW:ÕVXW Hq WuÕ }>q [ HB= H ù PK V a:N mJN pKEJ ∈ M¯M [ Hq iLk m Hq VXpXqV JBVxNS rVXk HM [ a:Hm iLY J k P N PRJ iLVXH kYN ynpXK Vji V x VXW P ôriL}b[ inY k P P y PWÕVXW WuÕ }[ P[B[ iV boV ynp VXy W [ PW yLPkoPRp y (x) n} q a;a:MVXN k m Vj[ zN iLk1PR[×WZV =´£a:m f boV J ynp VXN y k PRYÚiLVjk1Y } ^ ÕV J Õ V N J´T VXY KZa Pp (x , y , y , ., y ) [ H]H iLY K k P N J P n} q a;a:MVXN k m Vj[ÙynV azN J y V N a¬V N M VXW;ÕVXW WZVjboVXpXp }>q [ = x f(x) (x, f(x)) x M α i α i Példák. α α i α i1.ik ?:=² p (R × R, R, π) k m PW PRN rIboV J ynp VXN yVkVXbb PN y S b K k J V a:m f : R R M PW H N y n} q a;a:MVXN k m= Ó π : R R kVXb b PN y S b K k J PpVXWZy H ^ [ H b TH kVXkyiLV JAHq i JBVXN k H ^ T i H ÕVj[Q KlH>N = Ô
8B=² (TM, M, π) k m PW PN r boV J ynp VXN ynV K Pp M M Vj[ JLH inboVXp H;^ K¯= Ó π : TM M S =Ô v p VxiLb VXN ynpXV J VXy4b H N Y H k M VXpXV J V JH ^ rV T i H ÕVj[Q KAH N P-bcP a PyLPRrriLVXkY }^ ÕV J Vx[ J Vji VxN r H ^ W p Pp)PW`PRQXy H k m Pr1rÖiLVXkY }×^ ÕV J Vx[ J Vji VjN rV = VXN WZY PN }W J Vj[ K k J V JRH ^ P Jk E πk−1 y (xi , yµ , ., yµi1ik−1 , yµi1 ik ) πk−1 y (xi , yµ , ., yµi1ik−1 ) Bm K W MOPN k M PW H>N S H;a:m 1Pb K kYVXk x TH k J VjynV JBVXN k÷P ξ ∈ J E P π T i H ÕVj[Q KlH N bcP a Õ N PRN rP=´k M PRk S PplPRp π (ξ)HBH = K0 S NPRJ>[]N [ H Ji¬P ξK [ J HBH JiLHY^ K k PN N a:J>PmN KS ξ =K J(x a:, m0, ., 0, y PWZPR[ }1PR[ pXVx[#Pp y [ iLY k P P[ Vj[ k V [ } b k V Jk−1 E k k−1 µ i1.ik ) i k−1 µ i1 .ik . × T} E |T × {z JlzN T }y }ÖN ynp K boboV J i K [B}1y J VXkp H iLboVXp H ^ [ H b TH kVXkynV K ∂ . ξ ∈ Vji
π − ε(ξ) = y dx ⊗ . ⊗ dx ⊗ ∂y ûBp PRN b H W PN ynyLPRW KZa Pp H WZ1P J1H>N S H;a:m PoYVjô1k zN Q KAH N [ H iniLVx[ JlS PplPp~Pp ξ VXp zN W m b H N Y H k iLVjk1YVXW JJ VXkp H iLboVXp H ^ kVXb n} q a;a P[ H]H iLY K k P N J PRiLVjk1YynpjVji MUPN W`PRynp JPN y P N J1H N W =´ Vj P N J Vji π − S T ⊗ E V a:mÚK p H b H inô1pXb }y S£VXN yP k times µ i1 .ik k ε i1 i1 µ k ∗ k−1 ε y H i°V a:m V a plPR[ J y H i H plP JlS PRplPpPy H inrPkoV a:m b p VjN ynVj[ H W m PRk H [ S H;a:m V a:mDK [IWZVj[ V N T VXp VXN y[ V N T V [VXp H ^ WZVj[ V N T VXp VjN y-bcP a Õ P N M PW = πk−1 P N y£} J>PN k×ynpXVxiLV T W H+^ J VxiLVj[ VjN yOWZVj[ V N T V TH k JLH yLPk#boV a V a:m VXp K [IP i PN [ H:q M V J 0 −−− Sk T ∗ ⊗ E −−− Jk E −−− Jk−1 E −−− 0, 3.2 Lineáris PDE formális integrálhatósága V a:m VXk E VXN y F } :a m P k1Pp H k M VXWZV JJLK k m PW PN r
S°VjN y²WZV a:m VXk P : Sec(E) − Sec(F), f − Pf V a:m k PYinVXkY }^ Y KEg VjinVXkQ KlPN W H:T Vji P N JLH i =7 [][ H i S PoVXkk mBK rVXk K ynboVxi J Vj[ f kVj[P TH k J rPk k PY iLVXkY KZa PYVji KhMUPN W J ÕP K¯S PR[B[ H iboV a J }YÕ}>[fN b H kYPRk K P p ∈ M N JBN N J Ó PplPpÚP Pf kVj[fP p rVXk P 0 PY iLVXkY }^ ÕV J Õ V N J Ôx= W J PW PRN k H ynPk@ Pf(p) Vji Vj[ V PoVjk1k mDK rVXk K ynboVji J Vj[ f kVj[ÚP p ∈ M TH k J rPk k + l VXYÚiLVXkY KZa PYVji KEMUPN W J ÕØP K¯S PR[] [ H iÙS boÓ V acJ }Y;Õ}[ b H kY1P k K P K Pf l VXYwiLVj^ k1Y KZJa PÚN J YÔ =Vji KEMUPN W N Ja:ÕØm P K k1PRT[ H:JnPJ p VjN i JBVxN [ V N J P PpXPpÙP Pf k1Vx[ P p rVXW l VXY inVXkY } ÕØV Õ V p z [P p rVXk p0 (P) p0 (P) WZVx[ V N T Vjp VXN ynVj[V J P P VXp Pynyp H Q KXPN W J b H inô1pXb }ynk1PR[ S°K WEWZV JnM VIP P VXp Pyynp H Q KlPN W J bM H inKô1pXb~JnM }y l
VXY K [ T i H W HHq k a´q PN W SÚJ Õ PN N k1PR[IkV H:M T VjpXp }>qN JL[ H = pX VjkwS-WZVjK [ V N TJnM VXp VXN yVj[øbc P a Õ P N J R ^ PW WZWZV V R WZVXWOÕVXW W|Õ }>[ VXyÚP P Vji P i k PY WZWEV V k + l VXY iLVXkY } Jk E −−− F, k+l Jk+l E −−− Jl F, k ob V a;H WENY JPRN y JLPN K k1PR[ k1V J M VXpXp }>q [ = T Ó R H ⊂JJN J E VXN y R ynpjVXboW VXW V VXpjVXk VjiLVx[Ö[P QXy W`P P == == k k π y k+3 ⊂ Jk+l E k+l =dÔ [ :Hq M V J [VXp H ^ Y K P a iP == πk+3 y Rk+2 −−− Jk+2 E −−− πk+2 π k+2 y y Rk+1 −−− Jk+1 E −−− πk+1 π y y k+1 π y 3 J2 F π y 2 J1 F π y 1 Rk −−− Jk E −−− F ® ý Æ ÀÄj¹¼À Í ç À]ÁEÂùnÄj¹¼ÅÁ ÆA¾ Ç Éxö ¹LÄ Æ ¾ ¿ É ÄA¿ ÊæÉ ÄLÒ Æl¾ Ç ÁZÐ Æ ¼oÁE¼¿¹Lº;Ä ÆA¾ ÇZÈÆ ¿ É ¾ ¼ Æ ½ ¼¹ÎR¹ ÑXÑ4Í Ë ½ Ï ÈÆ~Æ Ç ¹ ½¹
¾ ö ¹ Ñ ¹¾ Ðx¹ ½ ÒoÁZ¼À¹Lº»Á ½ ¹Ð Ñ´Í Ë Ä þ ¹ ½ ¿ ü ¾ ÎBå ù P P `H iLb PN W K yLPk K k J V a i PN WEP J1H>N S PR[][ H i/P π ynp }>q i¯ÕVj[ JLKEMDKhJPN yLPOb K P JnJ V a:mJ V J ynp H ^ WEV a VXy JBN M H m S P K kVj[ M V J;}q WZV J V JcV N TT VXk P ξ S PpXPp+P ξ ∈ R VjynV VXk Pk W Pk ξ ∈R ^ a;H N KEJ J JH ^ V a:m k + 1 VXY iLVXkY } ^ boV a;H WZY PN yny P N =° p ξ k PY iLVjk1Y } boV WZY PyO[ VjiæÕØVjynp V }H J1H N rN r K N S P Jπ =E=Ey=£p }>q i¯ÕVj[ JLKhMDKEJ>PRN yLN PÖN b K P JnJ [ KEJ VjiæÕØVja:ynmop J MNV a:JJH ^ V a:m k + ^ 2 Ó Vj `YH inVXkN Y K }f^ Ô boV aa WZY Pyy P y r pXpXVXWPpVjWuÕ PRi PynynPW P kVj[cV V VjWZVXkciLVXkY } iLb PRW y boV H WZY PN y P N J [:P T Õ}>[ = 8 Definı́ció Pk πk+l k k k k+1 k+1 k k k 3.3 Differenciáloperátor szimbóluma V a:m VXk P : Sec E Sec F V a:m k PRYcinVXkY }c^ Y KEg VjiLVXkQ KXPRN W
H:T Vji P N JLH i = ù P)QXyLP[cP k PYiLVXkY } ^ J P a;H [ H k MBK pXy a´PN W|ÕØ}>[7PU1P J>PRN y P N JlS PR[][ H i[P T Õ}[PRp H:T Vji P N JLH i@yp K br H N WE}1b P N Jl= VÕ Hq W VXN y VjN iLVPRynpXk PN WuÕ}>[:P σ (P) ynp K b~r H N WZ}b H:Jl=Ã VX P N J 0 σ0 (P) Jk E ξ = (x, 0.0, yµi1ik ) −−− F = J0 (F) . σ0 (P)ξ = p0 (P)ξ IF K k J P K k J Pp J boV a b } J P JJ }>[ P (x, 0.0, y ) JlzN T }y }wN VjWZVXboVj[ J VjinV×boV a V a:m VXp K [oPp S T ⊗ E¯M VXW SzN a:m P+yp K br H N WE}1b K k J Vji T iLV J>PN WZ1P J1H N b K k J S T ⊗ E F WZVx[ V N T Vjp VXN yX µ i1.ik k ∗ σ0 (P) Sk T ∗ ⊗ E −−− ε y Jk E p0 (P) F ε y −−− F k ∗ ù PRy H k W H N Pk#WZVXV J P T i H W H k a4PRN W J PR[ÚynV a>zN J y V N a/V N M VjW¬rV M VXpXV J k K P P ynp K b~r H N WZ}b PN 1k PR[ T i H W H k ´a P N W J Õ P N J σl (P) a N J ¯M S σ (P) bcP Õ P g
PW P 0 Sk+l T ∗ ⊗ E −−− Sl T ∗ ⊗ F ε ε y y JF a N J c b P Õ P E W X V > W Ø Õ VjW Hq WuÕ }>q [ = σ (P) g pl (P) −−− Jk+l E 0 l l l ¸¬¹Lº»¹¼ ¹Lº»G¹¼À¹ Ñ ¹¿¿ä ÆA¾ Ñ ÁZÐ ÆÖÆ ý ¼¹ ½ å ¹ÎR¹ Ñ ¹¿ þÍ Ë ½ Æ ¹L¾ Äl¿ ¹ ¾ ½ ¹ ½ Äj¹ Æ ¿¹nÄj¹ ½ ¹¿nå ® Ñ ä ÆA¾ Ñ ÁZÐX¿U¹Lº» ½ Î ÆA¾ Ñ Á ý Äj¹Lº Í Ç Æ ¾ ÄLÁZÐ)ä ÆA¾ Ñ ÁZÐn¼ Æ ½ ¼¹ÎR¹ ÑXÑ´Í Ë ½ Ï ÈÆ À]ÁZÒ g (P) = À]ÁZÒ g (P) + XÀ]ÁZÒ g (P) . ® ÀBÁhÂùLÄj¹L¼ÅLÁ ÆA¾ ÇâÉxö ¹nÄ Æ ¾ ¿ É ÄÐ Ñ ÁEÒ ä ɾ Ç Í Ò Æ ¾ ¿BÁE¼Î ÉÇ Í ¿ ü ¾ μ Æ ½ ¼¹ÎR¹ ÑXÑ4Í Ë ½ Ï ÈÆOÇ ¹¾ ¿¹ Ñ Á ½ ÈÉ ÑXÑ Æ ¾ ½ Î ÆA¾ Ñ Á ý Äj¹Lº Í Ç Æ ¾ ÄLÁZÐä ÆA¾ Ñ ÁZÐXå 9 Definı́ció (Kvázi-reguláris bázis, involutivitás) dc . E = {e1 , ., en} Tp M j= . 1, .,
n (gk )p,e1 .ej = A ∈ gk (P)p | ie1 A = = iej A = 0 E n−1 k+1 x k x k x,e1 .ej j=1 3.4 Kovariáns deriválás p R JBVjN inrVXk+WZV a:m VXk X = X ∂ VXN y Y = Y ∂ [ V N JÃM Vj[ JLH inboVXp H>^ =/ p Y M Vj[ JLH iLboVXp H ^ K JLK [ HM PRi KXPRN k1yYVji KEMOPN W J Õ PN k1PR[×k1V M VXpXp }>q [ ∇ Y M Vj[ JLH inboVXp H:^ JlS P H W X ypXVji k Ó t;Ô . ∇ Y = X(Y )∂ . Vj P N J PRp X ynpjVji K k J YVji KhMUPN WZk K [VXWEW/Pp Y [ H b TH kVXky n} q a;a:MVXN k m V KhJl= ∇ PYY KhJAzN M b K kY[ V N J£MUPN W JnH p H N Õ PRN rPk S W K k1V PRN i K y X rVXk VXN y J VjW Tulajdonságok: ÕVXy zN JLK P ∇ (fY) = (Xf)Y + f∇ Y ynplPr PRN W mBJl= VjboQXyLPR[ M Vj[ JLH iLboVXp H ^ [V JlS PRk1Vjb n} q a;a:MVjN k m Vj[V JXS/J VXkp H iLboVjp H ^ [V J)K y)WEVXV J YV iJ KhMUPN WZH k K¯S =´ p)K VXW M b K kH Y KZa T}H a:m PRkPRK p:°1P TH V a:TmÚH J VXkp H K i S PR[B[ H i ∇ K TJnK K y²WZV a:KEMUm
VXN k J V a:= m Vjk1p i P kVj[cP[ b kVXkynV P T [ b k1Vjk1yV kVj[ X ynpXVxi k YVji PW ÕØP ù PøV a:m M Pp R kVj[ V a:m i VjN ynpXy H [Py P N a P ScVXN y KhJnJ PR[PRiL}k>[rV M VjpXV J k K V a:m K W m VXk#YVji KEMOPN W PN y JXS PR[][ H i M PkV a:m [ K y T i H rW VXN bcPB°kVXb r K p JLH y S H;a:m P VXk JnK VXW M Pa:Wh[:m PWEbcPp JPN y P N M J PWUH [P TH:N Jna>J S ∇ YH rVXkkV T M PH k PRN p VjN i S K k JH;H:^ a:JBm VjN inrKVXk = ù P H T VXK Y KZa PRp HBH M V Pryp iPR[ y [:PRy P PR[B[ i PpÚP i r1WÓ VXbcP k kQXy[Pk k [D}y[ i Y K k P N J PiLVXkYynpXVji S P K inV MH kP J [ H p J P JM P P t;Ô V a:m VXkWZV JnJ VXWUrV M VXpXV J V J k VXN k>[P [ HAM H Pi N KlPN K kK y°YVjHBi H KEMUPN K W J P N JlJ =4 p VjN i J#} N a:m M VXJ pjV J JLÕ H }>q [×H N rVP ∇ nq Ya;Vja:i MKhMUN PN W m PRN y JlS JX S£H;N a:m boM V a PRYJ Õ}>q [ PW [ PW y y/[ iLY k P PRiLVXkYynpXVjin1Vjp PRi p Γ
(x) } Vjk Vj[V VXy´rV VXpjV Õ }>[ n i j i j X j X X j X X n X k ij P ∇J æ J TP ∇ S ∂ H;=.a:m Γ ∂ `H iLb~}1W P N M PRW =/ VXk JLK1J }1WZPÕØY H kyny P N a;H [boV a [ H:q M V J V J W VjN y V N M VXW Pp [P ÕØ}>[ Ó <9Ô . ∇ Y = X(Y ) + Γ (x)X Y ∂ . F V a ÕV a:m VXpXp }>q [ S H;a:m Pp R [:Pk H k K [B}1y[ H kkVx KlH N Õ PRN H p J Pi JLH p H N Γ (x) n} q a;a:MVjN k m Vj[ Pp H k H ynPkÞk]}WZW PRN [ = F V a ÕV a:m VXpjp }>q [ JnHMOPRN rr P N S H;a:m PoVXkk mBK rVXk Y VjN i JBVxN [VGP N S H K H TH kVXkynV K+V N TT Vjk§Pp Y [ H b p ∈ M rVXkøp VjiL}y PR[B[ i+P ∇ Y k1PR[ p rVjW [ b TH kVXkynV K kVj[ X ynpXVji K k JLK YVji KEMOPN W J ÕØP =£ p+kVXboQXyLP[ M Vj[ JLH inboVXp H ^ [BinV S 1PkVXb J VXk p H inboVXp H ^ [BinV K y KZa PRp = [ HAM PRi KlPN kyßY KEg VxiLVXkQ KlPN W PN yßP J VXkp H i H [ F J Vji VjN k V a:m VXWZy H ^ iLVXkY } ^
Megjegyzés YJ KEg VjiLVXq kS Q KXPN H;W a:H:mT Vji P N JLH i S PRb K VXp = J PRi JnH p H N p (P) : J F T ⊗ F WZVx[ V N T Vjp VXN yiLV VXWuÕVXy }W p (P) ◦ ε = id ∂i j k ij k k X k ij i j k n k ij X 1 1 1 3.5 The Cartan-Kähler theorem Vk H:JLKZH k H; @K k MH WE} JnKEMDKEJmS: K Q VyPRWZWy J }1Y mK k J VkVx J yVXQ JLKZH k S PRWZW HA y }yéâì JLDH ë QVXé QL[ J 1V `H ì iLbcPW K k J V a iLPRr é :K Wé KEJíøm×ë K k B} KEéJ V)Pyé K b T WZV ë P m é éæð ì é é é í ò ñ ð ñ ð Ó k H kVXVXY ð JLH Q ð VXQL[ J ð1P J ò ñ J V)ð bcP ð T y π π PRinV H k JLòÙHÌÔxð = R YX C6kD 9X %lR ?> % ?> % A e/ A D ) ` % 7 9X 696 k L 6 % B ?> % A )*B ?> %gfihdj 6 %;:8) =< m6 k+l ¸¬¹¿ ä>¹ ÆcÇ ÁZ¼¹ Æ Ä ö/Æ ÄA¿âÁ ÆAÇ ÀBÁhÂùLÄj¹L¼¿æÁ ÆlÇUÉxö ¹LÄ Æ ¿ É Älå Í öö£É Ðx¹c¿ ÈÆ ¿
ÎR¹XÅA¿ É Ää Í ¼À Ç ¹ É ¼ Áõå ¹å ÁZÐÁZÐßÄj¹Lº Í ÇâÆ ÄAå Ê ÆXä ã ¿ ¹-л>Ò ä ÁEвÁZ¼Î ÁZÐ É ¼¿æÁõ¿ ÎRÉ ¹XÏ Ï ¿ È ¹¼ ã P ÁZÐ È ÊæÉ ÄLÒ ÆAÇZÇ »cÉÁZÇ ¼¿¹Lº;Ä Æ Éä ÇÇ Í¹Aå 14 Tétel. (Cartan-Kähler) P Rk P πk : Rk+1 − Rk gk+1 (P) ÁZÐ Æ First compatibility conditions for a PDO ù VxiLV V -K WZW¬Vx T W`P K k H JLH ô1k1Y K k J V a iPRr K W KhJm Q H kY KEJLKZH ky H i) H JLH QVXQL[ J VUyn}>i¯ÕVXQ JLKEMDKhJmÙH; π = r1y J iL}Q JLKEH k1y JnH7J 1V K k J V a iPr K W KEJmS PRWZy H QlPWZWEVXY ð ë ò éë;ì S PRi K ynV)P JßJ K y²y J P a V = V J P : Sec(E) − Sec(F) rVIP kJ H iLYVji W K kVlPRi e = VÖP M V J V `H WZW H-K k a Y K P a iP# on ) k pn 0 q2 0 τ / / T∗ ⊗ F /K O ε ∇ ε p (P) 1 / / / Rk+1 Jk+1 E J1 F O πk π0 πk
/ po (P) / Jk E /F Rk σk+1 Sk+1 T ∗ ⊗ E /0 Ó <?AÔ 0 0 1 VxiLV K YVXk H:J Vjy J VIQ H [VjiLkVXW H; -J VÖb H i T K yb σ K := Tb ⊗ F PkY K KEJ m K H JLKZH k H k F =U QXW`Pyny K QlPWiLVXy}1W JK k H bσ H W H;a;K QXPW ∇ yPRkPinr iPRi W kVlPRi²Q kk1VjQ PW a VjriP a;KEM VXy J V `H WZW H-K k a 15 Állı́tás ª È ¹LÄj¹¹ ÁZÐX¿æÐ Æ Ò É Ä öÈ ÁZÐnÒ ϕ : R − K Ð Í Å È ¿ ÈÆ ¿ß¿ È ¹-Ðx¹ Í ¹¼ÅX¹ ∗ k+1 G k π ϕ k Rk+1 −−− Rk −−− K k+1 ÁZй Æ Å¿nå ¼ ö/Æ Äl¿æÁâÅ Í ÇâÆ ÄxÏ¿ È ¹Ò É Ä ö@È ÁZÐÒ π ÁZÐ É ¼¿ É Á Ê´Æ ¼À É ¼ Ç »ÖÁ Ê ϕ = 0 å V J }y°Q H k1y J iL}Q J£J V-bcP T ϕ =°UH ky K YVji z ∈ R SJ PR[V z ∈ J E y}1Q J 1P J H T J = V1P M V π z = z PkY Q b } V p (P)z sr k k q2 k 1 1 1 k+1 1 û K kQX=V UJ H VynV
B}VXkJ QXV m#TJ ⊗ F K JJ F F K yVxPRQ JlSJ J K y T J i HAM VXy J 1P J p (P)zÓ ∈K b ε kynV B}VXk W VjinV Vx y y A ∈ T ⊗ F yn}Q 1P εA = p (P)z A y }k K B }VXJ W m Y1TV J VjJ iLb K kVXYcrVXQXP}ynV ε K y K k;ÕVXQ JLKhM V Ôx= V }y } ϕ(z) = τA. Vb~}1y J)T i HAM V J 1P J ϕ(z) Y H VXy+k H:J Y1V T VXkY H k J V)Q H;K QjV H; z =ß V J z PRWZy H rVÙPk#VXWEVXboVXk J²H; R yn}Q J 1P J π z = z = Q H }>iLyV V²ô1kY J 1P J π (z − z ) = 0 S y H z − z ∈ b ε =£ V J A rV-PkoVXWZVjboVXk J H; T ⊗ F yn}Q J P J εA = p (P)z = Vob }y J Q VXQL[ J 1P J τA = τA SÛK¯= V = M A − A ∈ Vji τ = b σ . V)P V π0 p1 (P)z1 = po (P)πk z1 = po (P)z = 0. / ∗ / 1 1 ∗ / 1 1 1 2 0 1 1 k ∗ 0 0 1 0 1 0 t2 1 2 0 1 0 1 Mn 0 k 1 k+1 0 1 k+1 ε(A − A 0 ) = p1 (P)z10 − p1 (P)z1 = p1 (P)(z10 − z1 ), VXkQXV b σ ) } J ε K y H k JLH>S y
H A − A ∈ b σ =° K y T i AH M VXy J 1P J ϕ K y VXWZW YVjô1k1VjY = HA WZV J }y²QVXQL[ J P J K H JnH ϕ = 0 ⇐⇒ π y k . VÕ}y J kVXVXY JLHcT i HAM V J 1P J+ Vji ϕ = b π . V 1P M V ϕ(z) = τA S -KEJ A yn}Q J 1P J εA = p (P)z PkY z yn}Q J P J π z = z = H J J τA = 0 ⇐⇒ A ∈ b σ ⇐⇒ ∃ B ∈ S T ⊗ E yn}Q 1P A = σ B. V J }1yQ H ky K YVji εB V1P M V a ε(A − A 0 ) ∈ p1 (P)ε(Sk+1 T ∗ ⊗ E) = ε σk+1 (Sk+1 T ∗ ⊗ E) = ε( 0 k+1 k+1 k 2 1 1 2 k 1 k 1 k+1 ∗ k+1 k+1 u PkY y H e Vjô1kV p1 (P)εB = εσk+1 B = εA = p1 (P)z1 = V)1P M V p1 (P)(z1 − εB) = 0 z := z1 − εB K Q T i HM Vjy J 1P J v2 J 1P J²K y z1 − εB ∈ Rk+1 . πk (z) = z − πk εB = z yn}Q J 1P J K¯= V =1 Vji ϕ = b π = 2 B}y J Vyn}>i¯ÕVXQ JLKhMDKEJmÚH; π QlPk rVQ1VjQ[VjY r m y HAK k
aJ 1P J ϕ = 0 = V -K WZWk HA V T W`P K kÚ HÛJ K yßQlPRk rV)QXPRini K VjY H } Jl= ϕ(z) = 0 ⇐⇒ ∃ z ∈ Rk+1 πk (z) = z, k q2 k wmxzy5{}|z~ 9y{|Z~{}|Um5?O|99; {MZy5{E~TQ| yO9m|; 3.6 Példa: lineáris konnexió V a:m VXk ∇ Pp M y H [:PRy P N a;H k V a:m W K kV PN i K yO[ H kkVx KAH>N =£ Vx[ K k J V JH ^ ∇ V a:m ∇ : X(M) −−− Sec(T ∗ ⊗ T ) VXWEy H ^ iLVXkY } ^ Y Khg VjiLVxiLVXkQ KlPN W H:T Vji P N JnH iLk1PR[ ÓS P H W ∇Y : X(M) X(M) WZVj[ V N T VXp VXN yP `H N M KlN Jl=4 <9Ô V a:m VXkWZV J PW`P T Õ PN k ∇ Y W H [ PN W K yLPkÚP X 7− ∇ Y iLb }W P PWYVjô1k PW 7− Y X ∇Y X ∂Y k ∂ . k j ∇X Y = X i + Γ (x)Y , ij ∂xi ∂xk [ V N T WZV JnJ VjWPY1P J1H N boV a>S´VXN y zN a:m P ∇ Y KEg VjiLVXkQ KXPN W H:T Vji P N JLH iL H p J PRi JLH p H N b H iôpjb }y p0
(∇) : −−− T ∗ ⊗ T J1 T x, Yik +Γijk (x)Y j . (x, Y j , Yik ) 7− p H:T Vji P N JnH iUynp K br H N WZ}b PRplPp7P K YVXk LJ K [B}1yßWZVx[ V N T Vjp VXN yX Szimbólum, involutivitás σ1 (∇) : T ∗ ⊗ T − T ∗ ⊗ T kVXbb PRN y S b K k J PRp σ1 (∇) σ1 (∇) (x, Aki ) −−− εy T ∗ ⊗ T −−− T ∗ ⊗ T εy p1 (∇) p1 (∇) Ó [ K ynp PRN b zN JPN ynk PN W J Vj[ K k J }k>[V a:m A = A dx ⊗e J VXkp H iLboVjp H:^ JlS Pp ε WZVj[ V N T VXp VXN ynynVXW V a:mH W m Pk k PYoiLVXkY }^ ÕV JØ [ VjN k JUK k J Vji T iLV JPN WuÕ}>[ S P K kVj[ PpPRW`PQXy H k m PRrroiLVXkY } ^ J P a ÕØP K PpXPpb H y J P 9R PY÷iLVXkY } ^ YVji KEMOPN W J PR[Bk1PR[ boV a; VXWZVjW H ^ [ HBH iLY K k P N J>PN [ k]}1WEW PRN [ S bcPÕYÚboV a k VXN pXp }>q [ S H;a:m b KEJ QXy K k PRN W M VXWEV+P~Y Khg VjiLVjk1Q KlPN W H:T Vji P N JLH i S PplPRp P p (∇) = ynp K br H N WZ}b T i H W
H k a´PN W J Õ PN k1PR[VXynV JBVXN k#1Py H kW H N PkIPY H N Y K [ S H;a:m J1 T −−− T ∗ ⊗ T k j j (x, 0, Aki) −−− (x, Aki ) k 0 σ2 (∇) p2 (∇) XV N yÖVXkkVj[ boV a; VXWZVXW H ^ Vjk P T i H W H k a4PRN W J ynp K b r H N WZ}bcP§P NT N T ⊗ T ⊗ T WZVx[ V Vjp VXyP ∗ ∗ −−− p1 (∇) (x, 0, 0, Akiji) −−− (x, 0, Akji) −−− J1 (T ∗ ⊗ T ) J2 T σ2 (∇) (x, Akji ) εy S2 T ∗ ⊗ T −−− T ∗ ⊗ T ∗ ⊗ T εy σ2 (∇) : S2 T ∗ ⊗ T − σ2 (∇)(B)(Z, X, Y) = B(Z, X, Y) K k>[BW }N p KAH>N =´ pXVXk#ynp K b~r H N WZ}b H [ bcP a Õ PRN iP+P g (∇) = Vji σ (∇) = {0}, g (∇) = Vji σ (∇) = {0}, 1 1 2 2 PY H N Y K [ S+VXN y zN a:m P p N ∈ M TH k J rPk MOPN W`Pynp JLH:JnJ+J V J ynp H ^ WEV a VXy {e , ., e } r PRN p K yiP a:mcJ jV iLb VXN ypXV J VXyVXk g (P) = {0}. Y K b g (∇) = 0, Y K b g (∇) = 0, Y K b g (P) = 0 VXN y-P Y K b g (P) = Y K b g
(P) + XY K b g (P) VXW JDV N J VXW J VjWuÕVXy }q W S K ynpXVjk 0 = 0 =£ VX P N J P ∇ ynp K b~r H N WZ}bcP K k MH WZ} JlzN M= 1 k n x,e1 .ej 1 2 k x,e1 .ej n−1 k+1 x k x k x,e1 .ej j=1 Integrálhatósági feltételek meghatározása Ó <?AÔ Y K P a iPok1PR[×P[ H k>[]i V N J VXynV J rVXk P σ2 (∇) R2 −−− π y 1 S2 T ∗ ⊗ T −−− T ∗ ⊗ (T ∗ ⊗ T ) −−− ε ε y y p1 (∇) 2 J1 (T ∗ ⊗ T ) π y 0 −−− J2 T π y 1 ßH [Vxi σ (∇)−− 0 po (∇) Y K P a iLP VXWEVXWboV a>=£FIKEM VXW@Pynp K b~r H N WZ}b VXN y T i H W H k a´PN W J ÕØP K k;ÕØVx[ JAzN MS VXpjVj[ÚbcP a ÕØP P J i KEMBKlPN W K yOp VjN iL}yLPRW JBVjN i S PRplPp g (∇) = 0 SOVXN y g (∇) = 0 = kkVj[ÖPW`P T Õ PN k Y K b UH [Vji σ (∇) = Y K b (T ⊗ T ⊗T )−iPk>[ σ = n − n (n + 1) = n (n − 1) , 2 2 NVXy ßH [Vxi σ (∇) K p H b H iLy Λ T
⊗ T æM VXW S PplPRp Pp Pk JnK ynp K boboV J i K [B}1y M Vj[ JLH i VjN i JDVjN [ } ^ J Vjk1p H i H [ J VjiLV = ù P rV M VXpXV J Õ }q [ P τ : T ⊗ T ⊗ T − Λ T ⊗ T Pk JLK ynp K boboV J i K p PN W H N WZVj[ V N T VXp VjN y J P R1 −−− (T ∗ ⊗ T ) −−− J1 T 1 ∗ 2 2 ∗ 2 2 ∗ 2 ∗ 3 2 2 ∗ 2 ∗ τ(C)(X, Y) = C(X, Y) − C(Y, X). ` H iLb~}W P N M PW S PR[][ H iOk mDK W MOPN kb K k1YVXk 1P M V B ∈ S2 T ∗ ⊗ T ynp K boboV J i K [B}1y J VXkp H iOVXyV JBVXN k τ ◦ σ2 (B)(X, Y) = σ2 (B)(X, Y) − σ2 (B)(Y, X) = B(X, Y) − B(Y, X) = 0. FIKEM VjW τ k mDK W MUPN k M PRW H N PkÚynp }>q i¯ÕVj[ JlzN MSzN a:m P σ τ S2 T ∗ ⊗ T −−−2 T ∗ ⊗ (T ∗ ⊗ T ) −−− Λ2 T ∗ ⊗ T −−− 0 y H i)JDN V J a plJlP=°[ Jl =o [B[ H i a:Jm VX P N J P τ ynV azN J y V Na:a¬mÖV N M H VXW´m [ K ypM PN b JLzNH J 1P J ÕØ}>H>^ [ S PÚ[ H b mDK T P JLK r K W KEJPN y K VXW V VXW
VXpÙWZV Vjk Y ∈ X(M) V W Pk Vj[ iLboVXp PRboVXW [cP p ∈ M TH k J rPk§V a:m VXWZy H ^ inVXkY }w^ boV a;H WZY PN y S PplPp j (Y) VXWZV a V J+J VXypoP p (∇)j (Y) = 0 VXW JDV N J VXWEk1Vx[ S PRplPp (∇Y) = 0 = ûBp PN b zN J yn}>[[ K P ϕ(j Y) = τ ∇(∇X) . ù P æM Hq q H KAHÙN JLH iLp KAH N Õ P N JlS PRplPp7P T (X, Y) =. ∇ Y − ∇ X − [X, Y] T VXWDÕVXW WuÕ }>[oP ∇ [ k1kVx `H iLb~}W P N M PWYVjô1k KlPN W JUJ VXkp H i JlS PR[][ H iP p TH k J rPk 1 p 0 1 1 x0 x0 X Y τ(∇∇Y)(X, Z) = (∇∇Y)(X, Z) − (∇∇Y)(Z, X) = ∇X (∇Y)(Z) − ∇Z (∇Y)(X) = ∇X ∇Z Y − ∇∇X Z Y − ∇Z ∇X Y + ∇∇Z X Y = R(X, Z)Y + ∇T (X,Z) Y = R(Y, Z)Y K ynpjVXk ∇ Y = 0 S boVji J ∇X = 0 = pXVj[ÛynpjVji K k J P [ H k1kVx KAH N a1Hq inr }q WZV JBVXN kVj[ L} q a;a:MVXN k mVjN rVXk M PRk M P a:m k K kQXy K k J V a i PN WZ1P J1H N y P N a;K VXW JBV N J VXWZV)P ∇ K k J V a i PN WZ1P
J1H N y P N a´PN k1PR[ ?:= 1P R = 0 S PR[B[ H i k K kQXy K k J V a i PN WZ1P J1H N y P N a;K) VXW JDV N J VXWEVwP ∇Y = 0 Y KEg V inVXkH ^ Q KlPN WZV a:m ^ VXkWZV J a;kH Vj[ S N PR plPpwP PRJi H J^ PÓk T H Pq H WZVja4i N JDV N J J1VXHÌNW Ô VjN i a:J m#VXWEb MNVjN a:rJ VXk b K k1YVXk ^ VjWZy iLVXkY }øboV WEY PRy VXWZVjboVXWZV i W k PRWZ1P V V VXWZVXkiLVXkY } boV a;H WZY PN yny P N 8B= 1P R 6= 0 S PR[][ H i H W m PRk Y VXWZy H ^ iLVXkY }#^ boV a;H WZY PN yOr K p JnH yLPk kVXbVXboVXWZV JH ^ VjW Ó K WZW =T i H W H k a4PRN WZ1P J1HÌN Ô V a:m MV N a:J VXWZVjkøiLVXkY }w^ boV a;H WZY PN yny P N S PoVXW mDK [#kVXb J VXWuÕVXy zN JnK Pp R(XZ)Y = 0 VXW JDV N J VXW J b K k1YVXk X, Z ∈ T VjynV JBVXN k = rrVjk PRa:pÙm VXynV J rJ VXk } N a:m [qVXWZW¬VXW|Õ PNS iLkBN }k>N [ S H;a:m P q [:P TMDH:K JnJa´ N VXW JDJ V N J KVXW J rJ VXWZV M VXK ynynH:p^ M}>q [N J PJnpJ V VXkWZV iLVjk1YynpjVji
}k>[BrV VXy };ÕiP#[VXpXY;Õ }[ pXy PW`P P k>[P P [ r z V V a:a:mm VXkWZV JJ iLVjk1JlYS ynpjVjiniLVXW S PplPpV a:m¬} q JnJMBK pXy a´PN W|ÕØ}>[ P ∇Y = 0 VXN y R(., )Y = 0 V VXkWZV Vj[V PplPp+P T (X,Z) p p u ∇X Y = 0, R(X, Z)Y = 0, ∀X ∈ T ∀X, Z ∈ T V a:m VXkWZV J iLVjk1YynpjVji Jl=´ pVXWZy H ^ n b zN a P7b PN y H Y K [ n(n − 1) Y1PRiLPRr T PRiLQ KlPN W K y Y KEg VjiLVXkQ KXPN WZV a:m VXkWZV J V J PY#PRp K yboVjiLV J WEVXk Y [ H b T H kVXkynV K iLV = 1 2