Informatika | Alapismeretek, ECDL » Hardver alapismeretek

Alapadatok

Év, oldalszám:2007, 6 oldal

Nyelv:magyar

Letöltések száma:364

Feltöltve:2009. szeptember 17.

Méret:47 KB

Intézmény:
-

Megjegyzés:

Csatolmány:-

Letöltés PDF-ben:Kérlek jelentkezz be!



Értékelések

Nincs még értékelés. Legyél Te az első!

Tartalmi kivonat

Hardver alapismeretek Szg-ek alapvető egységei: szg felépítése, fontosabb elemei, jellemzőik, Processzor, alaplap, buszrendszer, memória, Korszerű számítógépes konfigurációk, modularitás, Számítógépek üzembe helyezése, ergonómia. A számítógép vázlatos felépítése A számítógép működésének megértéséhez szükséges, hogy ismerjük a hardver felépítését, és tisztában legyünk a hardverelemek funkcióival. A következő ábra a számítógép részeinek vázlatos felépítését mutatja. Központi vezérlőegység A számítógép „agya” a központi vezérlőegység (CPU: Central Processing Unit). Két fő része a vezérlőegység (CU: Controll Unit), ami a memóriában tárolt program dekódolását és végrehajtását végzi, valamint az aritmetikai és logikai egység (ALU: Arithmetical and Logical Unit), ami a számítási és logikai műveletek eredményének kiszámításáért felelős. A központi vezérlőegységet processzornak

is nevezzük. Feladata a gép irányítása, a feldolgozási folyamatok vezérlése, az adatok feldolgozása, számítások elvégzése, a memóriában tárolt parancsok kiolvasása és végrehajtása, illetve az adatforgalom vezérlése. Az utasítások végrehajtásához a CPU átmeneti tárolóhelyeket, ún. regisztereket használ, amelyek gyorsabban elérhetők, mint a memória. A CPU-t sínrendszer köti össze a memóriával és a perifériavezérlőkkel. Megkülönböztetünk cím-, adat-, valamint vezérlősíneket. A vezérlősínen jelenik meg az órajel, amely a processzor ütemezéséhez használt jelforrás. Az egyes utasítások végrehajtására előre meghatározott számú óraütés áll rendelkezésre, a processzor csak hiba esetén figyel a tényleges végrehajtás befejezésére. A CPU sebességét megahertzben (MHz) mérik. Az áramköröket vezérlő órajel frekvenciája a processzor sebességének mérőszáma. Ha az órajel például 300 MHz, akkor a

processzor 300 millió műveleti ciklust végezhet el másodpercenként. A mai személyi számítógépek többségében az - eredetileg az Intel által kifejlesztett - x86-os (286, 386, stb.) elvek alapján működő processzorokat találunk Memória A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása kettes számrendszerben történik. A memória fontosabb típusai a RAM, a ROM, a PROM, az EPROM, az EEPROM és a Flash memória. RAM A RAM (Random Access Memory) véletlen elérésű írható és olvasható memória. A RAM az a memóriaterület, ahol a processzor a számítógéppel végzett munka során dolgozik. Ennek a memóriának a tartalmát tetszőleges sorrendben és időközönként kiolvashatjuk vagy megváltoztathatjuk. A RAM-ot más nevén operatív tárnak is nevezzük Minden bevitt adat először a RAM-ba

íródik, és ott kerül feldolgozásra. Itt helyezkednek el és ezen a területen dolgoznak az aktuálisan működő programok is. A RAM azonban nem alkalmas adataink huzamosabb ideig való tárolására, mert működéséhez folyamatos áramellátásra van szükség. Ha az áramellátás megszakad - például áramszünet vagy a gép kikapcsolása esetén - a RAM azonnal elveszíti tartalmát. A gép bekapcsolásakor a RAM mindig teljesen üres A RAM-ok szerepe az utóbbi évtizedben jelentősen átértékelődött. A DRAM (Dynamic RAM) viszonylag lassú, a mai gépekben már nem használt RAM típus. A DRAM-ot a gyorsabb, de drágább SRAM (Static RAM) váltotta fel. Az EDORAM (Extended Data Out RAM) a DRAM egy másik elvek alapján továbbfejlesztett, gyorsabb változata. Az EDORAM jellegzetessége, hogy másodlagos memóriákat adnak a DRAM meglévő memóriacelláihoz, mellyel megkönnyítik az adatokhoz való gyors hozzáférést. Az SDRAM (Synchronous DRAM) az EDORAM

továbbfejlesztett változata, melyet a mai korszerűbb gépekben is megtalálunk. Az SDRAM továbbfejlesztése a DDR-SDRAM (Double Data Rate-SDRAM), amely az SDRAM-hoz képest dupla sebességű adatátvitelt biztosít. Ez a RAM típus kisebb energiafelvétele miatt különösen alkalmas a hordozható számítógépekben való használatra. Napjaink egyik leggyorsabb RAM típusa az RDRAM (Rambus DRAM), mely az ismertetett RAM típusokhoz képest nagyságrendekkel nagyobb adatátviteli sebességre képes. ROM A ROM (Read Only Memory) csak olvasható memória, amelynek tartalmát a gyártás során alakítják ki, más szóval beégetik a memóriába. Az elkészült ROM tartalma a továbbiakban nem törölhető és nem módosítható, a hibás ROM-ot egyszerűen el kell dobni. Előnye azonban, hogy a számítógép kikapcsolásakor sem törlődik, a beégetett adatok bekapcsolás után azonnal hozzáférhetőek. Mivel a számítógép működéséhez valamilyen program elengedhetetlen, a

RAM memória viszont a bekapcsoláskor üres, ezért a számítógép „életre keltését” szolgáló indítóprogramot, a BIOS-t (Basic Input Output System) egy ROM memóriában helyezik el. A BIOS-t ezért gyakran ROM BIOS-ként is emlegetik. PROM A PROM (Programmable ROM) programozható, csak olvasható memória, amely gyártás után még nem tartalmaz semmit. Minden felhasználó saját programot és adatokat helyezhet el benne egy beégető készülék segítségével. A PROM-ba írt adat nem törölhető, és nem írható felül. EPROM Az EPROM (Erasable PROM) egy olyan ROM, melynek tartalmát különleges körülmények között ultraibolya fény segítségével törölhetjük, és akár többször is újraírhatjuk. Előnye a ROM-ok korábbi változataival szemben, hogy tartalma szükség szerint frissíthető. EEPROM Az EEPROM (Electrically Erasable PROM) EPROM továbbfejlesztett változata, amelynek tartalma egyszerű elektronikus úton újraírható. Flash memória

Az EEPROM egy speciális típusa a Flash memória, melynek törlése és újraprogramozása nem bájtonként, hanem blokkonként történik. Ezt a memóriatípust használják például a modern számítógépek BIOS-ának tárolására, mivel lehetővé teszi a BIOS könnyű frissítését. Alaplap Ahogy a szoftverek világában óriási változásokat hoztak az elmúlt évek, úgy a hardverek is hatalmas mértékben változtak. Aki számítógépet vásárol, vagy bővít, mindenképpen tekintettel kell legyen az alaplap típusára, mert az alaplap megszabja a felhasználható processzor(ok) típusát és sebességét, a bővítőkártyahelyek számát és fajtáját, a felhasználható memória típusát, az adott gép által kezelhető maximális memóriaméretet, a használható számítógépházat és tápegységet. Méretét legtöbbször az ATX (régebben az AT) szabvány szerint alakítják ki. Az alaplapok fő elemei: Alaplapi lapkakészlet (chipset) Az alaplap és a

számítógép képességeit döntően meghatározza az alkalmazott lapkakészlet. A lapkakészletek sok különböző feladatot látnak el, jellemzően az alábbiakat: Memóriavezérlés: a memóriafrissítés, memóriához való hozzáférés kezelése (E)IDE-vezérlő: a háttértárak illesztését és kezelését végzi valós idejű óra, RTC (Real Time Clock) DMA-vezérlő: a közvetlen memória-hozzáférést vezérlő áramkör. Segítségével egyes eszközök a processzor terhelése nélkül képesek elérni a fizikai memóriát. IrDA-vezérlő: infravörös átvitelre szolgáló vezérlő Billentyűzetvezérlő, PS/2-es egérvezérlő, USB-portok ACPI-vezérlő az energiatakarékos üzemmódok kezelésére AGP illesztő vezérlése PCI bridge CMOS memória kezelése Hasonlóan a processzorokhoz, a chipkészleteknél is az Intel az uralkodó, de jelen van a piacon a Via, a SiS és az nVIDIA is. Az alaplapi lapkakészlet tartalmazhat további beépített elemeket is. Nem

ritka például, hogy az alaplapra van integrálva a grafikus rendszer, illetve a hangrendszer, a hálózati kártya, vagy a RAID vezérlő is. Bővítőkártya-helyek A mai alaplapok legnagyobb részét elfoglalják a bővítőkártyáknak szánt foglalatok. A mostanában gyártott alaplapokhoz alapvetően három típusú kártya használható: ISA, PCI, AGP. Mára az újabb alaplapokban már csak a két utóbbi típus található meg, és szinte teljesen eltűntek a korábbi szabványok: az EISA, VL és MCA kártyák. Némelyik alaplap több, némelyik kevesebb bővítőkártyát tud fogadni: egyes alaplapok akár nyolc, míg mások csak egy-két bővítőkártya fogadására alkalmasak. Memóriafoglalatok A fizikai memóriamodulok fogadására szolgálnak. CPU-foglalat A processzorok fejlődése eredményeképpen az eltérő típusú processzorok más-más foglalatban kapcsolódhatnak az alaplaphoz: Socket7: Az Intel Pentium, Cyrix és az AMD K6 processzorok foglalata. Slot1

foglalat: a processzorral egy tokba épített külső gyorsítótárral (cache) rendelkező Pentium II és a korai Pentium III és egyes Celeron processzorok foglalata. A később bevezetett Socket370-es foglalatba illeszkedő processzorok egy Slot1-Socket370 átalakítóval Slot1-es foglalattal épített alaplapokban is használhatóak. Socket370 foglalat: A Celeron, és a Pentium III processzorok foglalattípusa. SlotA foglalat: az első generációs Athlon processzorok használják ezt a foglalatot. SocketA foglalat: A Slot formátumnál olcsóbb a Socket forma, ezért az újabb Athlon és Duron processzorai a SocketA foglalatba illeszkednek. A mai processzorok már az Intelnél az S-478, LGA-775, az AMD processzorai pedig S-754, illetve S-939 tipusú foglalattal rendelkeznek. Külső csatlakozók Az alaplaphoz szabványos csatolókon kapcsolódik a billentyűzet és az egér, valamint más perifériák (nyomtató, modem, scanner, hangszóró, stb.) A mára elterjedté vált ATX

alaplapokon a billentyűzet és az egér ellemzően PS/2-es vagy USB porton csatlakozik az alaplaphoz. Infravörös, USB, soros és párhuzamos kapukból egy vagy több is előfordulhat Buszrendszer A számítógép egyes részei kommunikációt folytatnak egymással. Az üzeneteket az alaplapon található buszok (sínek, vezetékcsoportok) szállítják. A processzor buszokon keresztül csatlakozik környezetéhez. A buszrendszer előnye, hogy lehetővé teszi a CPU és a perifériák, valamint a memória és a perifériák közti közvetlen kapcsolatot. A buszrendszer típusa nagymértékben meghatározza a számítógép effektív sebességét, azaz, hiába vannak gyors eszközeink, processzorunk, ha az alapon található buszrendszer maximális sebessége nem felel meg az elvárásoknak. A buszrendszer sebességét MHz-ben határozzuk meg Kétféle feszültség állapot jellemezhet egy vezetéket: logikai 1 (van áram), logikai 0 (nincs áram). Tartalmilag a busz három vezetéke

különíthető el: adatbusz: adatok küldésére és fogadására. címbusz: a processzor ezeken a vezetéken címzi a memóriát. vezérlőbusz: itt haladnak a vezérlőjelek: megszakítás-vezérlés, órajel, adatátvitel-vezérlés stb. Belső és külső buszrendszer: belső buszrendszer: a processzoron belüli adatátvitelt bonyolítja külső buszrendszer: a processzor és a perifériák közti adatátvitelt végzi (ez rendszerint lassúbb) Korszerű számítógépes konfiguráció: Számítógépes konfiguráción értjük a számítógép központi egységét, a vele egybeépített belső memóriával együtt, egy merev és egy hajlékony mágneslemez egységet, mint háttértárolót, egy billentyűzetet, egy egeret és egy monitort. A fejlődés eredményeként új kategória kezd meghonosodni: a multimédiás számítógép. Ez az eddigieken felül CD-ROMmeghajtót,(esetleg DVD olvasót-írót) hangkártyát, hangszórókat és mikrofont tartalmaz A számítógép

üzembe helyezése: Először is az alaplapot kell összeszerelni, ami magába foglalja a házat, az alaplapot és a hozzászerelhető dolgokat (memória, winchester, cd/dvd meghajtók, hang-videókártya, stb.) Ha ez meg van, akkor csatlakoztatni kell a géphez a ki-és bemeneti eszközöket. Pl.: billentyűzet, egér, monitor, nyomtató, stb Ha ezek is meg vannak, akkor már csak áramot kell adnunk és kész is a számítógépünk