Mathematics | High school » Matematika központi írásbeli felvételi feladatsor megoldással, 2005

E-mail delivery to Gmail is unreliable right now. Choose another e-mail for registration if possible.

Please log in to read this in our online viewer!

Matematika központi írásbeli felvételi feladatsor megoldással, 2005

Please log in to read this in our online viewer!


 2005 · 18 page(s)  (253 KB)    Hungarian    96    February 03 2011  
    
Comments

No comments yet. You can be the first!

Content extract

2005. január-február FELVÉTELI FELADATOK 8. évfolyamosok számára M–1 feladatlap Név: . Születési év: hó: nap: A feladatokat tetszés szerinti sorrendben oldhatod meg. Minden próbálkozást, mellékszámítást a feladatlapon végezz! Mellékszámításokra az utolsó, üres oldalt is használhatod (ezt az oldalt nem értékeljük). Tollal dolgozz! Zsebszámológépet nem használhatsz. A megoldásra összesen 45 perced van Jó munkát kívánunk! 8. évfolyam – M–1 feladatlap / 1 1. Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál. a Keresd meg a hiányzó öt számot! . 2. . 1 3 . . . Egy műszaki áruház raktárában 120 darab televízió van. A készlet 15%-a 36 cm képátlójú készülék, 48 darab 72 cm képátlójú, a többi 55 cm képátlójú. a) A legkisebb képátlójú készülékből hány darab van a raktárban? . b) Az 55 cm

képátlójú készülékből hány darab van a raktárban? . c) Hány százalékkal változik a teljes raktárkészlet, ha 21 készüléket eladnak? . a b c 8. évfolyam – M–1 feladatlap / 2 3. Az ábrákon látható táblázatokban többféle módon olvasható el a LOGIKA szó. A bal felső sarokból indulva csak jobbra vagy lefelé haladhatunk. a Rajzold be a táblázatokba az összes olyan különböző lehetőséget, amelyben nem lépünk kétszer közvetlenül egymás után jobbra! (Több ábra van, mint ahány lehetőség.) Pl.: L O G O G I G I K I K A 4. L O G L O G L O G L O G O G I O G I O G I O G I G I K G I K G I K G I K I K A I K A I K A I K A L O G L O G L O G L O G O G I G I K O G I G I K O G I G I K O G I G I K I K A I K A I K A I K A A következő ábra köreibe úgy kell beírni az 1, 2, 3, 4, 5, 6, 7 számokat, hogy a nyilak a kisebb számra mutassanak. Pótold a hiányzó számokat! 5 1 a 8. évfolyam – M–1

feladatlap / 3 5. Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan igaz a) Lehet, hogy Lehetetlen igaz a b c d e Ha egy természetes szám osztható néggyel is és tízzel is, akkor osztható negyvennel. b) Az első tíz darab prímszám összege páratlan. c) Egy paralelogramma átlói felezik a belső szögeket. d) 3 km < 25 m + 5000 cm 100 e) 0,25 óra = 30 perc – 300 másodperc 6. Egy cég vezetése az éves jutalomalapot legeredményesebb dolgozói között akarta szétosztani. A javaslat szerint Andrea, Béla, Csaba és Dénes kapott volna jutalmat, az egyes jutalmak aránya az előbbi sorrendnek megfelelően 1 : 2 : 3 : 4 Közben kiderült, hogy akinek a teljes jutalomalap ötödét szánták, súlyos hibát követett el. A vezetés úgy döntött, hogy a neki szánt 16 000 forintot is szétosztják a másik három dolgozó között úgy, hogy az ő jutalmaik közötti arány ne változzon. a) Hány forint a jutalomalap? . b) Név szerint ki nem kap

jutalmat a négy dolgozó közül? . c) A kiosztott jutalmak közül mennyi volt a legkevesebb? . d) Mennyi volt a legnagyobb kiosztott jutalom? . a b c d 8. évfolyam – M–1 feladatlap / 4 7. Péter szeptember első hetében megmérte a levegő hőmérsékletét az erkélyen reggel 7 órakor és délután 2 órakor. Az eredményekről a következő grafikonokat készítette: napok reggel 7 óra Szo. P. Cs. Sze. K. H. 0 5 10 15 20 25 napok hőmérséklet (ºC) délután 2 óra Szo. P. Cs. Sze. K. H. 0 5 10 15 20 25 hőmérséklet (ºC) a) Mekkora volt a legnagyobb különbség a reggeli hőmérsékletek között? . b) Hány ºC volt a hat nap átlaghőmérséklete délután kettőkor? . c) Hétfőn mennyit emelkedett a hőmérséklet reggel hét óra és délután két óra között? . d) Mekkora volt a legnagyobb napi hőmérsékletkülönbség a két mérési időpont között? . a b c d 8. évfolyam – M–1 feladatlap / 5 8. A birkózóverseny

eredményhirdetéséhez három darab egyforma tömör fakockából az alábbi módon készítettünk dobogót: – két kocka egy-egy lapját összeragasztottuk, – a harmadik kockát az egyik lapjával párhuzamosan pontosan félbevágtuk, – a két félkockát a rajz szerint hozzáragasztottuk a két kockához. a dobogó elölről a dobogó alulról a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm2. Hány dm élhosszúságú volt egy kocka? b) A dobogó alját feketére, a többi részét fehérre festettük. Összesen hány négyzetlapnyi felületet festettünk fehérre? . c) Hány dm2 a fehérre festett felület? . a b c 8. évfolyam – M–1 feladatlap / 6 9. Egy desszertes dobozban háromfajta csokoládé van: – barna csomagolású, amiben két darab mogyoró van, – fehér csomagolású, amiben egy darab mogyoró van, a b c d – drapp csomagolású, amiben nincs mogyoró. A dobozban lévő 33 darab csokoládéban összesen 32

mogyoró van. A barna és a fehér csokoládék számának összege kétszerese a drapp csokoládék számának a) Hány darab drapp csomagolású csokoládé van? . b) Hány darab barna csokoládé van? . c) Hány darab fehér csokoládé van? . Jegyezd le a megoldás gondolatmenetét! 10. Egy derékszögű háromszög derékszögű csúcsából induló magasság és szögfelező 15º-os szöget zár be egymással. Készíts ábrát! Jelöld az ismert szögeket! Mekkorák ennek a derékszögű háromszögnek a hegyesszögei? . A háromszög hosszabb befogójára négyzetet rajzolunk. Hány cm2 ennek a négyzetnek a területe, ha a rövidebb befogó hossza 2 cm? a b c d e 2005. január-február FELVÉTELI FELADATOK 8. évfolyamosok számára M–1 feladatlap – Javítókulcs A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok további részekre általában nem bonthatók, bontás csak ott lehetséges, ahol erre külön utalás van. 1.

2. 3. 1 1 3 3 a) Minden helyesen leírt szám 1 pont. Ha valamelyik helyre rossz számot ír, arra nem jár pont, de ha ezzel helyesen számol tovább, akkor a további pontok megadhatók. -1 0 1 3 2 a) 18 b) 54 (= 120 – 18 – 48) 21 c) 17,5%-kal (= · 100) 120 Pl.: 1 pont 1 pont 2 pont L O G O G I G I K I K A L O G O G I G I K I K A L O G O G I G I K I K A L O G O G I G I K I K A L O G O G I G I K I K A L O G O G I G I K I K A a) Minden helyes lehetőség 1 pont. 4. 5 pont legfeljebb 5 pont 2 6 3 5 4 7 1 5. a) minden szám helyes beírása Egyébként legalább három szám helyes beírásáért 2 pont adható. 3 pont a) lehet, hogy igaz b) biztosan igaz c) lehet, hogy igaz d) biztosan igaz e) lehetetlen 1 pont 1 pont 1 pont 1 pont 1 pont 8. évfolyam – M–1 feladatlap – Javítókulcs / 2 6. a) 80 000 b) Béla c) 10 000 Ft d) 40 000 Ft Ha valamelyik részben hibázik, arra nem jár pont, de ha az eredménnyel helyesen számol tovább, akkor a

további pontok megadhatók. 1 pont 1 pont 2 pont 2 pont 7. a) 5 ºC b) 24 c) 12 ºC-ot d) 15 ºC 1 pont 2 pont 1 pont 2 pont 8. a) 6 b) 12-t c) 432 2 pont 2 pont 1 pont 9. a) 11 b) 10 c) 12 (= 22 – 10) d) jó megoldásra vezető gondolatmenet áttekinthető lejegyzése 2 pont 1 pont 1 pont 2 pont 10. B β c 15º α C b A a) helyesen felrajzolt ábra, megfelelő jelölésekkel b) α = 30º, β = 60º c) c = 4 cm (amit az ábrán jelöl vagy a számításában felhasznál) d) b2 = c2 – a2 vagy 42 – 22 = 12 (a Pitagorasz-tétel felírása betűvel vagy számmal) e) a négyzet területe: 12 (12 cm2) 1 pont 1 pont 1 pont 1 pont 1 pont 2005. január-február FELVÉTELI FELADATOK 8. évfolyamosok számára M–2 feladatlap Név: . Születési év: hó: nap: A feladatokat tetszés szerinti sorrendben oldhatod meg. Minden próbálkozást, mellékszámítást a feladatlapon végezz! Mellékszámításokra az utolsó, üres oldalt is használhatod (ezt az oldalt nem

értékeljük). Tollal dolgozz! Zsebszámológépet nem használhatsz. A megoldásra összesen 45 perced van Jó munkát kívánunk! 8. évfolyam – M–2 feladatlap / 1 1. Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik a két szomszédja összegének a felével egyenlő. a Keresd meg a hiányzó öt számot! . 2. . 3 7 . . . Egy általános iskolában összesen 60 tanuló jár matematika szakkörre. A matematika szakkörre járók 30%-a hatodikos, 15 tanuló hetedikes, a többiek nyolcadikosok a) Hány hatodikos jár matematika szakkörre? . b) Hány nyolcadikos jár matematika szakkörre? . c) Tudjuk, hogy az iskola hetedikeseinek 60%-a matematika szakkörös. Hány hetedikes tanuló jár az iskolába? a b c 8. évfolyam – M–2 feladatlap / 2 3. Az alábbi ábrákon satírozz be három kört úgy, hogy a besatírozott körök közül semelyik kettőt ne kösse össze közvetlenül vonal! a Rajzold

meg az összes lehetőséget! (Több ábra van, mint ahány lehetőség.) Pl.: 4. Olyan négyjegyű számokat keresünk, amelyekben minden számjegy nagyobb a leírásban őt követő számjegynél, és minden számjegy legalább akkora, mint az őt követő két számjegy szorzata. Ilyen szám például a 8421. a) Írd le a legkisebb ilyen négyjegyű számot! . b) Írd le a legnagyobb ilyen négyjegyű számot! . c) Írj egy ugyanilyen tulajdonságú ötjegyű számot! . a b c 8. évfolyam – M–2 feladatlap / 3 5. Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan igaz Lehet, hogy Lehetetlen igaz a b c d e a) A trapéz átlói felezik egymást. b) Négy egymást követő egész szám összege nem 0. c) A háromszög magasságvonalai a háromszögön belül metszik egymást. Ha x páratlan, y páros pozitív egész, akkor az d) x tört értéke egész szám. y 2 2 2 e) 720 cm + 0,016 m < 8,9 dm 6. Levente hétfőn elköltötte a zsebpénze felét,

kedden a maradék harmadát, szerdán a megmaradt pénze negyedét, és így 300 Ft-ja maradt. a) Mennyi pénze maradt keddről szerdára? . b) Mennyi pénze maradt hétfőről keddre? . c) Mennyi pénze volt eredetileg? . a b c 8. évfolyam – M–2 feladatlap / 4 7. A következő diagramon a XX. század utolsó négy olimpiáján szerzett magyar érmek számát ábrázoltuk (A: arany, E: ezüst, B: bronz). db Szöul 1988 Barcelona 1992 Atlanta 1996 Sydney 2000 A E B A E B A E B A E B 8 6 4 2 a) A négy közül melyik olimpián szereztük a legkevesebb ezüstérmet? . b) Összesen hány aranyérmet szereztünk ezen a négy olimpián? . c) Átlagosan hány ezüstérmet szereztünk ezen a négy olimpián? . d) Melyik fajta éremből szereztük összesen a legtöbbet ezen a négy olimpián? . a b c d 8. évfolyam – M–2 feladatlap / 5 8. Az ábrán látható háromszor hármas táblára olyan kockákat helyeztünk, amelyeknek a lapjai egybevágóak a tábla

mezőivel. A táblát felülnézetben láthatod, az egyes mezőkben szereplő számok azt jelentik, hogy az adott mezőn hány kockát tettünk egymásra. a) Rajzold le az építmény bal oldali nézetét! 1 bal oldali nézet 2 1 3 2 1 1 ↑ elölnézet b) Rajzold le az építmény elölnézetét! c) Ha a kockák élhosszúsága 2 cm, mekkora az építmény térfogata? . d) Maximum hány darab kockát lehet elvenni úgy, hogy az építménynek se a bal oldali, se az elölnézete ne változzon? . a b c d 8. évfolyam – M–2 feladatlap / 6 9. Három testvér közösen vásárolt egy televíziót. A legidősebb éppen annyi pénzt adott a vételárba, mint a másik kettő együtt A középső feleannyit fizetett, mint a másik kettő együtt a b c d a) Mennyibe került a televízió, ha a középső testvér 18 000 Ft-ot fizetett? . b) A vételár hányad részét fizette ki a középső testvér? . c) A vételár hányad részét fizette ki a legidősebb testvér? .

d) A vételár hányad részét fizette ki a legfiatalabb testvér? . 10. Az ábrán látható derékszögű háromszögben igaz, hogy BE = CE, CD = ED és DA = EA. Az „A” csúcsnál lévő szög α = 36°. Mérés nélkül határozd meg a következő szögek nagyságát! (Az ábra nem pontosan méretezett.) ABC∡ = . BEC∡ = . DEA∡ = . CED∡ = . B E α C D A a b c d 2005. január-február FELVÉTELI FELADATOK 8. évfolyamosok számára M–2 feladatlap – Javítókulcs A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok további részekre általában nem bonthatók, bontás csak ott lehetséges, ahol erre külön utalás van. 1. 2. -5 -1 3 7 11 15 19 a) Minden helyesen leírt szám 1 pont. Ha valamelyik helyre rossz számot ír, arra nem jár pont, de ha ezzel helyesen számol tovább, akkor a további pontok megadhatók. 5 pont a) 18 b) 27 (= 60 – 18 – 15) 1 pont 1 pont c) 25 (= 3. 15 · 100) 60 2 pont Pl.:

a) Minden helyes lehetőség 1 pont. legfeljebb 5 pont 4. a) 3210 b) 9810 c) pl.: 63210, 73210, , 93210, 94210, Bármilyen helyes megoldás elfogadható. 2 pont 2 pont 1 pont 5. a) lehet, hogy igaz b) biztosan igaz c) lehet, hogy igaz d) lehetetlen e) biztosan igaz 1 pont 1 pont 1 pont 1 pont 1 pont 6. a) 400 Ft b) 600 Ft c) 1200 Ft Ha valamelyik részben hibázik, arra nem jár pont, de ha az eredménnyel helyesen számol tovább, akkor a további pontok megadhatók. 2 pont 2 pont 2 pont 7. a) az atlantain vagy az 1996-oson b) 37-et (= 11 + 11 + 7 + 8) c) 7-et (= [6 + 12 + 4 + 6] : 4) d) aranyéremből 1 pont 1 pont 2 pont 1 pont 8. évfolyam – M–2 feladatlap – Javítókulcs / 2 8. a) 2 pont bal oldali nézet b) 2 pont elölnézet 9. c) 88 cm3 (= 11 · 8 cm3) d) 3-at 1 pont 1 pont a) 54 000 Ft-ba (= 3 · 18 000) 1 pont 1 b) részét 3 1 részét (felét) c) 2 d) 1 1 1 részét (= 1 − − ) 6 3 2 10. a) ABC ∡ = 54° b) BEC ∡ = 72° c) DEA ∡

= 72° d) CED ∡ = 36° 1 pont 1 pont 2 pont 1 pont 1 pont 1 pont 1 pont